Outline

- How can we measure and compare algorithms meaningfully?
 - an algorithm will run at different speeds on different computers
- O notation.
- Complexity types.
 - Worst-case vs average-case
 - Real-time vs amortized-time

Selection sort algorithm

```c
// Ταξινομεί τον πίνακα array μεγέθους size
void selection_sort(int array[], int size) {
    // Βρίσκουμε το μικρότερο στοιχείο του πίνακα, το τοποθετούμε στη θέση 1,
    // και συνεχίζουμε με τον ίδιο τρόπο στον υπόλοιπο πίνακα.
    for (int i = 0; i < size; i++) {
        // βρίσκουμε το μικρότερο στοιχείο από αυτά σε θέσεις >= i
        int min_position = i;
        for (int j = i; j < size; j++)
            if (array[j] < array[min_position])
                min_position = j;

        // swap των στοιχείων i και min_position
        int temp = array[i];
        array[i] = array[min_position];
        array[min_position] = temp;
    }
}
```

Running Time

- Array of 2000 integers
- Computers A, B, ..., E are progressively faster.
 - The algorithm runs faster on faster computers.

<table>
<thead>
<tr>
<th>Computer</th>
<th>Time (secs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer A</td>
<td>51.915</td>
</tr>
<tr>
<td>Computer B</td>
<td>11.508</td>
</tr>
<tr>
<td>Computer C</td>
<td>2.382</td>
</tr>
<tr>
<td>Computer D</td>
<td>0.431</td>
</tr>
<tr>
<td>Computer E</td>
<td>0.087</td>
</tr>
</tbody>
</table>
More Measurements

- What about different programming languages?
- Or different compilers?
- Can we say whether algorithm A is better than B?

A more meaningful criterion

- Algorithms consume resources: e.g. time and space
- In some fashion that depends on the size of the problem solved
 - the bigger the size, the more resources an algorithm consumes
- We usually use n to denote the size of the problem
 - the length of a list that is searched
 - the number of items in an array that is sorted
 - etc

Curves of the running times

If we plot these numbers, they lie on the following two curves:

- $f_1(n) = 0.0007772n^2 + 0.00305n + 0.001$
- $f_2(n) = 0.0001724n^2 + 0.00040n + 0.100$

selection_sort running time

In msecs, on two types of computers

<table>
<thead>
<tr>
<th>Array Size</th>
<th>Home Computer</th>
<th>Desktop Computer</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>12.5</td>
<td>2.8</td>
</tr>
<tr>
<td>250</td>
<td>49.3</td>
<td>11.0</td>
</tr>
<tr>
<td>500</td>
<td>195.8</td>
<td>43.4</td>
</tr>
<tr>
<td>1000</td>
<td>780.3</td>
<td>172.9</td>
</tr>
<tr>
<td>2000</td>
<td>3114.9</td>
<td>690.5</td>
</tr>
</tbody>
</table>
Discussion

- The curves have the **quadratic** form \(f(n) = an^2 + bn + c \)
 - difference: they have **different constants** \(a, b, c \)
- Different computer / programming language / compiler:
 - the curve that we get will be of the same form!
- The exact numbers change, but the **shape of the curve** stays the same.

Complexity classes, \(O \)-notation

- We say that an algorithm belongs to a **complexity class**
- A class is denoted by \(O(g(n)) \)
 - \(g(n) \) gives the running time as a function of the size \(n \)
 - it describes the **shape** of the running time curve
- For **selection sort** the time complexity is \(O(n^2) \)
 - take the **dominant term** of the expression \(an^2 + bn + c \)
 - throw away the constant coefficient \(a \)

Why only the dominant term?

\(f(n) = an^2 + bn + c \)

with \(a = 0.0001724, b = 0.0004 \) and \(c = 0.1 \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>(f(n))</th>
<th>(an^2)</th>
<th>(n^2) term as % of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>2.8</td>
<td>2.7</td>
<td>94.7</td>
</tr>
<tr>
<td>250</td>
<td>11.0</td>
<td>10.8</td>
<td>98.2</td>
</tr>
<tr>
<td>500</td>
<td>43.4</td>
<td>43.1</td>
<td>99.3</td>
</tr>
<tr>
<td>1000</td>
<td>172.9</td>
<td>172.4</td>
<td>99.7</td>
</tr>
<tr>
<td>2000</td>
<td>690.5</td>
<td>689.6</td>
<td>99.9</td>
</tr>
</tbody>
</table>

Why only the dominant term?

- The lesser term \(bn + c \) **contributes very little**
 - even though \(b, c \) are much larger than \(a \)
 - Thus we can **ignore this lesser term**
- Also: we **ignore the constant** \(a \) in \(an^2 \)
 - It can be thought of as the "time of a single step"
 - It depends on the computer / compiler / etc
 - We are only interested in the shape of the curve
Common complexity classes

<table>
<thead>
<tr>
<th>O-notation</th>
<th>Adjective Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)$</td>
<td>Constant</td>
</tr>
<tr>
<td>$O(\log n)$</td>
<td>Logarithmic</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>Linear</td>
</tr>
<tr>
<td>$O(n \log n)$</td>
<td>Quasi-linear</td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>Quadratic</td>
</tr>
<tr>
<td>$O(n^3)$</td>
<td>Cubic</td>
</tr>
<tr>
<td>$O(2^n)$</td>
<td>Exponential</td>
</tr>
<tr>
<td>$O(10^n)$</td>
<td>Exponential</td>
</tr>
<tr>
<td>$O(2^{2^n})$</td>
<td>Doubly exponential</td>
</tr>
</tbody>
</table>

Sample running times for each class

Assume 1 step = 1 μsec.

<table>
<thead>
<tr>
<th>$g(n)$</th>
<th>$n = 2$</th>
<th>$n = 16$</th>
<th>$n = 256$</th>
<th>$n = 1024$</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1 μsec</td>
<td>1 μsec</td>
<td>1 μsec</td>
<td>1 μsec</td>
</tr>
<tr>
<td>$\log n$</td>
<td>1 μsec</td>
<td>4 μsec</td>
<td>8 μsec</td>
<td>10 μsec</td>
</tr>
<tr>
<td>n</td>
<td>2 μsec</td>
<td>16 μsec</td>
<td>256 μsec</td>
<td>1.02 ms</td>
</tr>
<tr>
<td>$n \log n$</td>
<td>2 μsec</td>
<td>64 μsec</td>
<td>2.05 ms</td>
<td>10.2 ms</td>
</tr>
<tr>
<td>n^2</td>
<td>4 μsec</td>
<td>25.6 μsec</td>
<td>65.5 ms</td>
<td>1.05</td>
</tr>
<tr>
<td>n^3</td>
<td>8 μsec</td>
<td>4.1 ms</td>
<td>16.8 ms</td>
<td>17.9 min</td>
</tr>
<tr>
<td>2^n</td>
<td>4 μsec</td>
<td>65.5 ms</td>
<td>10^{63} years</td>
<td>10^{297} years</td>
</tr>
</tbody>
</table>

The largest problem we can solve in time T

Assume 1 step = 1 μsec.

<table>
<thead>
<tr>
<th>$g(n)$</th>
<th>$T = 1$ min</th>
<th>$T = 1$ hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>6×10^7</td>
<td>3.6×10^9</td>
</tr>
<tr>
<td>$n \log n$</td>
<td>2.8×10^6</td>
<td>1.3×10^8</td>
</tr>
<tr>
<td>n^2</td>
<td>7.75×10^3</td>
<td>6.0×10^4</td>
</tr>
<tr>
<td>n^3</td>
<td>3.91×10^2</td>
<td>1.53×10^3</td>
</tr>
<tr>
<td>2^n</td>
<td>25</td>
<td>31</td>
</tr>
<tr>
<td>10^n</td>
<td>7</td>
<td>9</td>
</tr>
</tbody>
</table>

Complexity of well-known algorithms

- Sequential searching of an array $O(n)$
- Binary searching of a sorted array $O(\log n)$
- Hashing (under certain conditions) $O(1)$
- Searching using binary search trees $O(\log n)$
- Selection sort, Insertion sort $O(n^2)$
- Quick sort, Heap sort, Merge sort $O(n \log n)$
- Multiplying two square x matrices $O(n^3)$
- Traveling salesman, graph coloring $O(2^n)$
Formal definition of O-notation

$f(n)$ is the function giving the actual time of the algorithm.

We say that $f(n)$ is $O(g(n))$ iff
- there exist two positive constants K and n_0
- such that $|f(n)| \leq K|g(n)| \quad \forall n \geq n_0$.

We will not focus on the formal definition in this course.

Intuition

- An algorithm runs in time $O(g(n))$ iff it finishes in at most $g(n)$ steps.

- A "step" is anything that takes constant time
 - a basic operation, e.g. $a = b + 3$
 - a comparison, e.g. $\text{if}(a == 4)$
 - etc

- Typical way to compute this
 - find an expression $f(n)$ giving the exact number of steps (or an upper bound)
 - find $g(n)$ by removing the lesser terms and coefficients (justified by the formal definition)

Example

- An algorithm takes $f(n)$ number of steps, where
 - $f(n) = 3 + 6 + 9 + \cdots + 3n$

- We will show that the algorithm runs in $O(n^2)$ steps.

- First find a closed form for $f(n)$:
 - $f(n) = 3(1 + 2 + \cdots + n) = \frac{3n(n+1)}{2} = \frac{3}{2}n^2 + \frac{3}{2}n$

- Throw away
 - the lesser term $\frac{3}{2}n$
 - and the coefficient $\frac{3}{2}$

- We get $O(n^2)$

Scale of strength for O-notation

To determine the dominant term and the lesser terms:

$O(1) < O(\log n) < O(n) < O(n^2) < O(n^3) < O(2^n) < O(10^n)$

Example:

- $O(6n^3 - 15n^2 + 3n \log n) = O(6n^3) = O(n^3)$
Ignoring bases of logarithms

- When we use O-notation, we can **ignore the bases of logarithms**
 - assume that all logarithms are in base 2.
- Changing base involves multiplying by a **constant coefficient**
 - ignored by then O-notation
- For example, $\log_{10} n = \frac{\log n}{\log 10}$. Notice now that $\frac{1}{\log 10}$ is a constant.

$O(1)$

- It is easy to see why the $O(1)$ notation is the right one for constant time
- Constant time means that the algorithm finishes in k steps
- $O(k)$ is the same as $O(1)$, constants are ignored

Caveat 1

- O-complexity talks about the behaviour for **large values** of n
 - this is why we ignore lesser terms!
- For small sizes a “bad” algorithm might be faster than a “good” one
- We can test the algorithms **experimentally** to choose the best one

Caveat 2

- $O(g(n))$ complexity is an **upper bound**
 - the algorithm finishes in **at most** $g(n)$ steps
- Comparing algorithms can be misleading!
 - item A costs **at most** 10 euros
 - item B costs **at most** 5000 euros
 - which one is cheaper?
- Programmers often say $O(g(n))$ but mean $\Theta(g(n))$
 - finishes in **exactly** $g(n)$ steps
 - we won't use Θ but keep this in mind
Types of complexities

- Depending on the **data**
 - Worst-case vs Average-case
- Depending on the **number of executions**
 - Real-time vs amortized-time

Worst-case vs Average-case

- Say we want to sort an array, **which values** are stored in the array?
- **Worst-case**: take the worst possible values
- **Average-case**: average wrt to all possible values
- Eg. quicksort
 - worst-case: \(O(n^2) \) (when data are already sorted)
 - average-case: \(O(n \log n) \)

Real-time vs amortized-time

- **How many times** do we run the algorithm?
- **Real-time**: just once
 - \(n \) is the size of the problem
- **Armortized-time**: multiple times
 - take the average wrt all execution (**not** wrt the **values**!)
 - \(n \) is the number of executions
- Example: Dynamic array! (we will see it soon)

Some algorithms and their complexity

We will analyze the following algorithms

- Sequential search
- Selection sort
- Recursive selection sort
Sequential search

```c
// Αναζητά τον ακέραιο target στον πίνακα target. Επιστρέφει τη θέση του στοιχείου αν βρεθεί, διαφορετικά -1
int sequential_search(int target, int array[], int size) {
    for (int i = 0; i < size; i++) {
        if (array[i] == target)
            return i;
    }
    return -1;
}
```

- The steps to locate `target` depends on its position in `array`
 - if `target` is in `array[0]`, then we need only one step
 - if `target` is in `array[i-1]`, then we need `i` steps

Complexity analysis

Worst case
- This is when `target` is in `array[size-1]`
- The algorithm needs `n` steps
- So its complexity is `O(n)`

Average case
- Assume that we always search for a `target` that exists in `array`
- If `target == array[i-1]` then we need `i` steps
- Average wrt all possible positions `i` (all are equally likely)
 \[
 \text{Average} = \frac{1 + \ldots + n}{n} = \frac{n(n+1)}{2n} = \frac{n}{2} + \frac{1}{2}
 \]
- Therefore the average is `O(n)`
 - Same if we consider `targets` that don't exist in `array`

Selection sort algorithm

```c
// Ταξινομεί τον πίνακα array μεγέθους size
void selection_sort(int array[], int size) {
    // Βρίσκουμε το μικρότερο στοιχείο του πίνακα, το τοποθετούμε στη θέση και συνεχίζουμε με τον ίδιο τρόπο στον υπόλοιπο πίνακα.
    for (int i = 0; i < size; i++) {
        // βρίσκουμε το μικρότερο στοιχείο από αυτά σε θέσεις >= i
        int min_position = i;
        for (int j = i; j < size; j++)
            if (array[j] < array[min_position])
                min_position = j;
        // swap των στοιχείων i και min_position
        int temp = array[i];
        array[i] = array[min_position];
        a[min_position] = temp;
    }
}
```
Complexity analysis of selection_sort

- **Inner for**
 - its body is constant: 1 step
 - $n - i$ repetitions ($n = \text{size}$, $i =$current value of i)
 - so the whole loop takes $n - i$ steps

- **Outer for**
 - its body takes $n - i$ steps
 - first execution: n steps, second: $n - 1$ steps, etc
 - Total: $n + \ldots + 1 = \frac{n(n+1)}{2}$ steps

- So the time complexity of the algorithm is $O(n^2)$

Recursive selection_sort

Elegant recursive version of the algorithm

```c
// Ταξινομεί τον πίνακα array μεγέθους size
void selection_sort(int array[], int size) {
    // Με λιγότερα από 2 στοιχεία δεν έχουμε τίποτα να κάνουμε
    if (size < 2)
        return;
    // Τοποθετούμε το ελάχιστο στοιχείο στην αρχή
    swap(array, 0, find_min_position(array, size));
    // Ταξινομούμε τον υπόλοιπο πίνακα
    selection_sort(&array[1], size - 1);
}
```

Analysis of recursive selection_sort

- How many steps does selection_sort take?
 - Let $g(n)$ denote that number
 - $g(0) = g(1) = 1$ (nothing to do)
 - For $n > 1$ selection_sort calls:
 - find_min_position: n steps
 - swap: 1 step (ignored compared to n)
 - selection_sort: $g(n-1)$ steps

So $g(n) = \begin{cases} n + g(n-1) & n > 1 \\ 1 & n \leq 1 \end{cases}$
Analysis of recursive selection_sort

This is a recurrence relation, we can solve it by unrolling:

\[g(n) = n + g(n-1) \]
\[= n + (n-1) + g(n-2) \]
\[= n + (n-1) + (n-2) + g(n-3) \]
\[\ldots \]
\[= n + \ldots + 1 \]
\[= \frac{n(n+1)}{2} \]

So again we get complexity \(O(n^2) \)

ADTList using Linked Lists

What is the worst case complexity of each operation?

- list_insert_next
- list_remove_next
- list_next
- list_last
- list_find

Readings

- Robert Sedgewick. Αλγόριθμοι σε C, Κεφ. 2.