AVL Trees

We saw that most of the algorithms in BSTs are $O(h)$.
But in the worst-case, $h = O(n)$.
So it makes sense to keep trees “balanced.”
Many different ways to define what “balanced” means.
In all of them: $h = O(\log n)$.

E.g. complete are one type of balanced tree.

But it’s hard to maintain both BST and complete properties together.

AVL: a different type of balanced trees.

An AVL tree is a BST with an extra property:

For all nodes: $|\text{height(left-subtree)} - \text{height(right-subtree)}| \leq 1$

In other words, no subtree can be much shorter/taller than the other.

Recall: **height** is the longest path from the root to some leaf.

- tree with only a root: height 0
- empty tree: height -1

Named after Russian mathematicians Adelson-Velskii and Landis.

Example – AVL tree
Example – AVL tree

Example – AVL tree

Example – Non-AVL tree

Example – Non-AVL tree
The desired property

- In an AVL tree: \(h = O(\log n) \)
 - Proving this is not hard

- \(n(h) \): **minimum number of nodes** of an AVL tree with height \(h \)
 - We show that \(h \leq 2 \log n(h) \)
 - by **induction on** \(h \)
 - induction works very well on recursive structures!
 - The base cases hold trivially (why?)
 - \(n(0) = 1 \)
 - \(n(1) = 2 \)

Balance factor

A node can have one of the following “balance factors”

<table>
<thead>
<tr>
<th>Balance factor</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Sub-trees have equal heights</td>
</tr>
<tr>
<td>(/)</td>
<td>Left sub-tree is (1) higher</td>
</tr>
<tr>
<td>(//)</td>
<td>Left sub-tree is (> 1) higher</td>
</tr>
<tr>
<td>(|)</td>
<td>Right sub-tree is (1) higher</td>
</tr>
<tr>
<td>(\\)</td>
<td>Right sub-tree is (> 1) higher</td>
</tr>
</tbody>
</table>

Nodes \(-\), \(/\), \(\|\) are AVL.
Nodes \(//\), \(\\\ \) are not AVL.
Operations in an AVL Tree

- Same as those of a BST
- Except that we need to restore the AVL property
 - after inserting a node
 - or deleting a node
- We do this using rotations

Recursive AVL restore

- Restoring the AVL property is a recursive operation
- It happens during an insert or delete
 - Which are both recursive
 - When their recursive calls are unwinding towards the root
- So when we restore a node \(r \), its children are already restored AVL trees

AVL restore after insert

- Assume \(r \) became // after an insert (the case /// is symmetric)
- Let \(x \) be the root of the right subtree
 - The new value was inserted under \(x \) (since \(r \) is //)
- What can be the balance factor of \(x \)?
 - // and /// are not possible since the child \(x \) is already restored
- Case 1: \(x \) is //
 - A left-rotation on \(r \) restores the property!
 - Both \(r \) and \(x \) become \(- \) (easily seen in a drawing)
AVL restore after insert

- **Case 2:** x is $/$
 - This is more tricky
 - A left-rotation on r (as before) might cause x to become $//$

- We need to do a **double** right-left rotation
 - First **right-rotation** on x
 - Then **left-rotation** on r

- The left-child w of x becomes the new root
 - w becomes $-\,$
 - r becomes $\,\,\,$ or $/$
 - x becomes $\,\,$ or $\,$

AVL restore after insert

- **Case 3:** x is $\,$

 This in fact **cannot happen**!
 - Assume both subtrees of x have height h
 - Then the left subtree of r also must have height (h)
 - Otherwise AVL would be violated **before** the insert (see the drawings)
Symmetric case

- The case when x becomes $//$ is symmetric.
- We need to consider the BF of its left-child x:
 - x is $/$: we do a single right rotation at r.
 - x is \backslash: we do a double left-right rotation at x and r.
 - x is $\backslash\backslash$: impossible.

Insert: single right rotation at r.

Insert: double left-right rotation at x and r.

Insert example.
Inserting BRU, causes single right-rotate at ORY

Inserting DUS

Inserting ZRH

Inserting MEX
AVL restore after delete

- Assume \(r \) became \(\backslash \backslash \) after delete (the case \(// \) is symmetric)
- Let \(x \) be the root of the right-subtree
 - The value was deleted from the left sub-tree (since \(r \) is \(\backslash \backslash \))
- What can be the balance factor of \(x \)?
 - \(\backslash \backslash \) and \(// \) are not possible since the child \(x \) is already restored
- Case 1: \(x \) is \(\backslash \)
 - A left-rotation on \(r \) restores the property!
 - Both \(r \) and \(x \) become \(\backslash \) (easily seen in a drawing)

Delete: single left-rotation at \(r \)

![Diagram of AVL tree with nodes T1, T2, T3, and x representing deleted node.](image)
AVL restore after delete

- Case 2: x is \backslash
 - After a delete this is possible!
 - A left-rotation on r again restores the property
 - r becomes \backslash, x becomes $/$

Delete: single left-rotation at r

- We need to do a double right-left rotation
 - First right-rotation on x
 - Then left-rotation on r
- The left-child w of x becomes the new root
 - w becomes \backslash
 - r becomes \backslash or $/$
 - x becomes \backslash or \backslash

AVL restore after delete

- Case 3: x is $/$
 - This is more tricky
 - A left-rotation on r (as before) might cause x to become $//$
- We need to do a double right-left rotation
 - First right-rotation on x
 - Then left-rotation on r

Delete: double right-left rotation at r

- Height reduced
Deleting a, causes single left-rotate at d

Deleting m, causes double left-right rotation at d and h

Complexity of operations on AVL trees

- Search on BST is $O(h)$
 - So $O(\log n)$ for AVL, since $h \leq 2 \log n$
- Insert/delete on BST is $O(h)$
 - We add at most one rotation at each step, each rotation is $O(1)$
 - So also $O(\log n)$
- Interesting fact
 - During insert at most one rotation will be performed!
 - Because both rotations we saw decrease the height of the sub-tree
Implementation details

- We need to keep the **height** of each subtree
 - to compute the balance factors
 - If we need to save memory we can store **only** the balance factors
- Restoring after both insert and delete are similar
 - We can treat them together

Readings