AVL Trees

We saw that most of the algorithms in BSTs are $O(h)$

But in the worst-case $h = O(n)$

So it makes sense to keep trees "balanced"

Many different ways to define what "balanced" means

In all of them: $h = O(\log n)$

Eg. complete are one type of balanced tree (see Heaps)

But it's hard to maintain both BST and complete properties together

AVL: a different type of balanced trees

AVL Trees

An AVL tree is a BST with an extra property:

For all nodes: $|\text{height(left-subtree)} - \text{height(right-subtree)}| \leq 1$

In other words, no subtree can be much shorter/taller than the other

Recall: height is the longest path from the root to some leaf

- tree with only a root: height 0
- empty tree: height -1

Named after Russian mathematicians Adelson-Velskii and Landis

Example – AVL tree

Balanced trees

- We saw that most of the algorithms in BSTs are $O(h)$
 - But $h = O(n)$ in the worst-case
- So it makes sense to keep trees "balanced"
 - Many different ways to define what "balanced" means
 - In all of them: $h = O(\log n)$
- Eg. complete are one type of balanced tree (see Heaps)
 - But it’s hard to maintain both BST and complete properties together
- AVL: a different type of balanced trees
Example – Non AVL tree

The desired property

- In an AVL tree: $h = O(\log n)$
 - Proving this is not hard

- $n(h)$: minimum number of nodes of an AVL tree with height h
 - We show that $h \leq 2\log n(h)$
 - by induction on h
 - induction works very well on recursive structures!
 - The base cases hold trivially (why?)
 - $n(0) = 1$
 - $n(1) = 2$

The desired property

- Inductive step
 - Assume $\frac{k}{2} \leq \log n(h)$ for all $h < k$
 - Show that it holds for an AVL tree of height $h = k$
- Both subtrees of the root have height at least $h - 2$
 - because of the AVL property!
 - So $n(k) \geq 2n(k - 2)$ (1)
- Induction hypothesis for $h = k - 2$
 - $\frac{k-2}{2} \leq \log n(k - 2)$
- From (1) we take \log on both sides and apply the ind. hypothesis
 - $\log n(k) \geq 1 + \log n(k - 2) \geq 1 + \frac{k-2}{2} = \frac{k}{2}$

Balance factor

A node can have one of the following “balance factors”

<table>
<thead>
<tr>
<th>Balance factor</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Sub-trees have equal heights</td>
</tr>
<tr>
<td>/</td>
<td>Left sub-tree is 1 higher</td>
</tr>
<tr>
<td>//</td>
<td>Left sub-tree is > 1 higher</td>
</tr>
<tr>
<td>\</td>
<td>Right sub-tree is 1 higher</td>
</tr>
<tr>
<td>///</td>
<td>Right sub-tree is > 1 higher</td>
</tr>
</tbody>
</table>

Nodes -, /, \ are AVL.
Nodes //, /// are not AVL.
Example non-AVL Tree

Operations in an AVL Tree

- Same as those of a BST
- Except that we need to restore the AVL property
 - after inserting a node
 - or deleting a node
- We do this using rotations

Recursive AVL restore

- Restoring the AVL property is a recursive operation
- It happens during an insert or delete
 - Which are both recursive
 - When their recursive calls are unwinding towards the root
- So when we restore a node \(r \), its children are already restored AVL trees

AVL restore after insert

- Assume \(r \) became \(\backslash\backslash \) after an insert (the case \(// \) is symmetric)
- Let \(x \) be the root of the right subtree
 - The new value was inserted under \(x \) (since \(r \) is \(\backslash\backslash \))
- What can be the balance factor of \(x \)?
 - \(\backslash\backslash \) and \(// \) are not possible since the child \(x \) is already restored
- Case 1: \(x \) is \(\backslash \)
 - A left-rotation on \(r \) restores the property!
 - Both \(r \) and \(x \) become \(\rangle \) (easily seen in a drawing)
Insert: single left rotation at r

![Diagram of single left rotation at r]

- Tree height $h+3$
- New node

AVL restore after insert

- **Case 2:** x is $ackslash$
 - This is more tricky
 - A left-rotation on r (as before) might cause x to become $ackslash\backslash$
 - We need to do a **double** right-left rotation
 - First **right-rotation** on x
 - Then **left-rotation** on r
 - The left-child w of x becomes the new root
 - w becomes $ackslash$
 - r becomes \backslash or $ackslash$
 - x becomes \backslash or $ackslash$

Insert: double right-left rotation at x and r

![Diagram of double right-left rotation at x and r]

- One of T_3 or T_4 has the new node and height h
- Tree height $h+3$

AVL restore after insert

- **Case 3:** x is $ackslash$
 - This in fact **cannot happen**!
 - Assume both subtrees of x have height h
 - Then the left subtree of r also must have height (h)
 - Otherwise AVL would be violated **before** the insert (see the drawings)
Symmetric case

- The case when \(x \) becomes // is symmetric.
- We need to consider the BF of its left-child \(x \):
 - \(x \) is //: we do a single right rotation at \(r \).
 - \(x \) is \(\backslash \): we do a double left-right rotation at \(x \) and \(r \).
 - \(x \) is \(\backslash / \): impossible.

Insert: single right rotation at \(r \)

Insert: double left-right rotation at \(x \) and \(r \)

Insert example
Inserting BRU, causes single right-rotate at ORY

Inserting DUS

Inserting ZRH

Inserting MEX
AVL restore after delete

- Assume \(r \) became \(\backslash \backslash \) after delete (the case // is symmetric)
- Let \(x \) be the root of the right-subtree
 - The value was deleted from the left sub-tree (since \(r \) is \(\backslash \backslash \))
- What can be the balance factor of \(x \)?
 - \(\backslash \backslash \) and // are not possible since the child \(x \) is already restored
- Case 1: \(x \) is \(\backslash \)
 - A left-rotation on \(r \) restores the property!
 - Both \(r \) and \(x \) become \(\backslash \) (easily seen in a drawing)

Delete: single left-rotation at \(r \)

```
\begin{tikzpicture}
  \node (r) at (0,0) {r};
  \node (x) at (1,0) {x};
  \node (T1) at (-1,-1) {T_1};
  \node (T2) at (0,-1) {T_2};
  \node (T3) at (1,-1) {T_3};
  \node (T4) at (2,-1) {T_4};
  \draw (r) -- (x);
  \draw (r) -- (T1);
  \draw (T1) -- (T2);
  \draw (T2) -- (x);
  \draw (T2) -- (T3);
  \draw (x) -- (T4);
\end{tikzpicture}
```

Deleted node

```
\begin{tikzpicture}
  \node (r) at (0,0) {r};
  \node (x) at (1,0) {x};
  \node (T1) at (-1,-1) {T_1};
  \node (T2) at (0,-1) {T_2};
  \node (T3) at (1,-1) {T_3};
  \node (T4) at (2,-1) {T_4};
  \draw (r) -- (x);
  \draw (r) -- (T1);
  \draw (T1) -- (T2);
  \draw (T2) -- (x);
  \draw (T2) -- (T3);
  \draw (x) -- (T4);
\end{tikzpicture}
```

Height reduced

\(h-1 \)
AVL restore after delete

- Case 2: x is \backslash
 - After a \textit{delete} this is possible!
 - A \textit{left-rotation} on r again restores the property
 - r becomes \backslash, x becomes $/$

- Case 3: x is $/$
 - This is more tricky
 - A left-rotation on r (as before) might cause x to become $//$
 - We need to do a \textit{double} right-left rotation
 - First \textit{right-rotation} on x
 - Then \textit{left-rotation} on r
 - The left-child w of x becomes the new root
 - w becomes \backslash
 - r becomes \backslash or $/$
 - x becomes \backslash or \backslash
Deleting a, causes single left-rotate at d

Deleting m, causes double left-right rotation at d and h

Search on BST is $O(h)$
- So $O(\log n)$ for AVL, since $h \leq 2 \log n$

Insert/delete on BST is $O(h)$
- We add at most one rotation at each step, each rotation is $O(1)$
- So also $O(\log n)$

Interesting fact
- During insert at most one rotation will be performed!
- Because both rotations we saw decrease the height of the sub-tree
Implementation details

- We need to keep the **height** of each subtree
 - to compute the balance factors
 - If we need to save memory we can store **only** the balance factors
- Restoring after both insert and delete are similar
 - We can treat them together

Readings