AVL Trees

- **Balanced trees**
 - We saw that most of the algorithms in BSTs are $O(h)$
 - But $h = O(n)$ in the worst-case
 - So it makes sense to keep trees “balanced”
 - Many different ways to define what “balanced” means
 - In all of them: $h = O(\log n)$
 - Eg. **complete** are one type of balanced tree (see Heaps)
 - But it’s hard to maintain both BST and complete properties together
 - **AVL**: a different type of balanced trees

AVL Trees

- An AVL tree is a BST with an extra property:
 - For all nodes: $|\text{height(left-subtree)} - \text{height(right-subtree)}| \leq 1$
- In other words, no subtree can be much shorter/taller than the other
- **Recall**: height is the longest path from the root to some leaf
 - tree with only a root: height 0
 - empty tree: height -1
- Named after Russian mathematicians Adelson-Velskii and Landis

Example – AVL tree

- Diagram of an AVL tree with nodes and connections.
Example – AVL tree

Example – AVL tree

Example – Non-AVL tree

Example – Non-AVL tree
Example – Non AVL tree

![Non AVL Tree Diagram]

The desired property

- In an AVL tree: \(h = O(\log n) \)
 - Proving this is not hard
- \(n(h) \): minimum number of nodes of an AVL tree with height \(h \)
- We show that \(h \leq 2 \log n(h) \)
 - by induction on \(h \)
 - induction works very well on recursive structures!
- The base cases hold trivially (why?)
 - \(n(0) = 1 \)
 - \(n(1) = 2 \)

The inductive step

Assume \(\frac{k}{2} \leq \log n(h) \) for all \(h < k \)
- Show that it holds for an AVL tree of height \(h = k \)

Both subtrees of the root have height at least \(h - 2 \)
- because of the AVL property!
- So \(n(k) \geq 2n(k - 2) \) \(\quad (1) \)

Induction hypothesis for \(h = k - 2 \)
- \(\frac{k-2}{2} \leq \log n(k - 2) \)

From (1) we take \(\log \) on both sides and apply the ind. hypothesis
- \(\log n(k) \geq 1 + \log n(k - 2) \geq 1 + \frac{k-2}{2} = \frac{k}{2} \)

Balance factor

A node can have one of the following “balance factors”

<table>
<thead>
<tr>
<th>Balance factor</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Sub-trees have equal heights</td>
</tr>
<tr>
<td>/</td>
<td>Left sub-tree is 1 higher</td>
</tr>
<tr>
<td>//</td>
<td>Left sub-tree is > 1 higher</td>
</tr>
<tr>
<td>\</td>
<td>Right sub-tree is 1 higher</td>
</tr>
<tr>
<td>\</td>
<td>Right sub-tree is > 1 higher</td>
</tr>
</tbody>
</table>

Nodes -, /, \ are AVL.
Nodes //, \\ are not AVL.
Example AVL Tree

Example AVL Tree

Example AVL Tree

Example AVL Tree
Operations in an AVL Tree

- Same as those of a BST
- Except that we need to **restore** the AVL property
 - after **inserting** a node
 - or **deleting** a node
- We do this using rotations

Recursive AVL restore

- Restoring the AVL property is a **recursive** operation
- It happens during an insert or delete
 - Which are both recursive
 - When their recursive calls are **unwinding** towards the root
- So when we restore a node \(r \), its **children** are already restored **AVL trees**

AVL restore after insert

- Assume \(r \) became \(\text{\begin{array}{c} \text{|} \\
\text{|} \end{array}} \) after an insert (the case \(\text{\begin{array}{c} \text{|} \\
\text{|} \end{array}} \) is symmetric)
- Let \(x \) be the **root** of the **right subtree**
 - The new value was inserted under \(x \) (since \(r \) is \(\text{\begin{array}{c} \text{|} \\
\text{|} \end{array}} \))
- What can be the **balance factor** of \(x \)?
 - \(\text{\begin{array}{c} \text{|} \\
\text{|} \end{array}} \) and \(\text{\begin{array}{c} \text{|} \\
\text{|} \end{array}} \) are not possible since the child \(x \) is **already restored**
- Case 1: \(x \) is \(\text{\begin{array}{c} \text{|} \\
\text{|} \end{array}} \)
 - A **left-rotation** on \(r \) restores the property!
 - Both \(r \) and \(x \) become \(\text{\begin{array}{c} \text{|} \\
\text{|} \end{array}} \) (easily seen in a drawing)
Insert: single left rotation at r

AVL restore after insert

Case 2: x is $/$
- This is more tricky
- A left-rotation on r (as before) might cause x to become $//$
- We need to do a double right-left rotation
 - First right-rotation on x
 - Then left-rotation on r
- The left-child w of x becomes the new root
 - w becomes $//$
 - r becomes x or $/$
 - x becomes \backslash or $/\$

Insert: double right-left rotation at x and r

AVL restore after insert

Case 3: x is \backslash
- This in fact cannot happen!
- Assume both subtrees of x have height h
- Then the left subtree of r also must have height (h)
- Otherwise AVL would be violated before the insert (see the drawings)
Symmetric case

- The case when x becomes // is symmetric
- We need to consider the BF of its left-child x
 - x is / : we do a single right rotation at r
 - x is \ : we do a double left-right rotation at x and r
 - x is ° : impossible

Insert: single right rotation at r

Insert: double left-right rotation at x and r

Insert example
Inserting BRU, causes single right-rotate at ORY

Inserting DUS

Inserting ZRH

Inserting MEX
AVL restore after delete

- Assume \(r \) became \(\ll \) after an insert (the case \(\lll \) is symmetric)
- Let \(x \) be the root of the right-subtree
 - The value was deleted from the left sub-tree (since \(r \) is \(\ll \))
- What can be the **balance factor** of \(x \)?
 - \(\ll \) and \(\lll \) are not possible since the child \(x \) is **already restored**
- Case 1: \(x \) is \(\ll \)
 - A **left-rotation** on \(r \) restores the property!
 - Both \(r \) and \(x \) become \(x \) (easily seen in a drawing)

Delete: single left-rotation at \(r \)
AVL restore after delete

- Case 2: x is \backslash
 - After a delete this is possible!
 - A left-rotation on r again restores the property
 - r becomes \backslash, x becomes $/\\$

AVL restore after delete

- Case 3: x is $/$
 - This is more tricky
 - A left-rotation on r (as before) might cause x to become $//$
 - We need to do a double right-left rotation
 - First right-rotation on x
 - Then left-rotation on r
 - The left-child w of x becomes the new root
 - w becomes \backslash
 - r becomes \fork or $/\\$
 - x becomes \backslash or \fork
Deleting a, causes single left-rotate at d

Deleting m, causes double left-right rotation at d and h

Complexity of operations on AVL trees

- Search on BST is $O(h)$
 - So $O(\log n)$ for AVL, since $h \leq 2 \log n$
- Insert/delete on BST is $O(h)$
 - We add at most one rotation at each step, each rotation is $O(1)$
 - So also $O(\log n)$
- Interesting fact
 - During insert at most one rotation will be performed!
 - Because both rotations we saw decrease the height of the sub-tree
Implementation details

- We need to keep the **height** of each subtree
 - to compute the balance factors
 - If we need to save memory we can store **only** the balance factors
- Restoring after both insert and delete are similar
 - We can treat them together

Readings