AVL Trees

Balanced trees

• We saw that most of the algorithms in BSTs are $O(h)$
 - But $h = O(n)$ in the worst-case
• So it makes sense to keep trees "balanced"
 - Many different ways to define what "balanced" means
 - In all of them: $h = O(\log n)$
• Eg. complete are one type of balanced tree (see Heaps)
 - But it’s hard to maintain both BST and complete properties together
• AVL: a different type of balanced trees

AVL Trees

• An AVL tree is a BST with an extra property:
 - For all nodes: $|\text{height(left-subtree)} - \text{height(right-subtree)}| \leq 1$
• In other words, no subtree can be much shorter/taller than the other
• Recall: height is the longest path from the root to some leaf
 - tree with only a root: height 0
 - empty tree: height -1
• Named after Russian mathematicians Adelson-Velskii and Landis

Example – AVL tree
Example – AVL tree

Example – Non-AVL tree

Example – AVL tree

Example – Non-AVL tree
The desired property

- In an AVL tree: \(h = O(\log n) \)
 - Proving this is not hard
- \(n(h) \): minimum number of nodes of an AVL tree with height \(h \)
- We show that \(h \leq 2 \log n(h) \)
 - by induction on \(h \)
 - induction works very well on recursive structures!
- The base cases hold trivially (why?)
 - \(n(0) = 1 \)
 - \(n(1) = 2 \)

Inductive step
- Assume \(\frac{k}{2} \leq \log n(h) \) for all \(h < k \)
- Show that it holds for an AVL tree of height \(h = k \)
- Both subtrees of the root have height at least \(h - 2 \)
 - because of the AVL property!
 - \(\text{So } n(k) \geq 2n(k - 2) \) \((1) \)
- Induction hypothesis for \(h = k - 2 \)
 - \(\frac{k-2}{2} \leq \log n(k - 2) \)
- From (1) we take \(\log \) on both sides and apply the ind. hypothesis
 - \(\log n(k) \geq 1 + \log n(k - 2) \geq 1 + \frac{k-2}{2} = \frac{k}{2} \)

Balance factor

A node can have one of the following “balance factors”

<table>
<thead>
<tr>
<th>Balance factor</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Sub-trees have equal heights</td>
</tr>
<tr>
<td>/</td>
<td>Left sub-tree is 1 higher</td>
</tr>
<tr>
<td>//</td>
<td>Left sub-tree is > 1 higher</td>
</tr>
<tr>
<td>\</td>
<td>Right sub-tree is 1 higher</td>
</tr>
<tr>
<td>\</td>
<td>Right sub-tree is > 1 higher</td>
</tr>
</tbody>
</table>

Nodes \(/, \), \(/\) are AVL.
Nodes \(//, \\\) are not AVL.
Example AVL Tree

Example AVL Tree

Example AVL Tree

Example AVL Tree
Example non-AVL Tree

Operations in an AVL Tree

- Same as those of a BST
- Except that we need to restore the AVL property
 - after inserting a node
 - or deleting a node
- We do this using rotations

Recursive AVL restore

- Restoring the AVL property is a recursive operation
- It happens during an insert or delete
 - Which are both recursive
 - When their recursive calls are unwinding towards the root
- So when we restore a node \(r \), its children are already restored AVL trees

AVL restore after insert

- Assume \(r \) became \(\backslash\backslash \) after an insert (the case // is symmetric)
- Let \(x \) be the root of the right subtree
 - The new value was inserted under \(x \) (since \(r \) is \(\backslash\backslash \))
- What can be the balance factor of \(x \)?
 - \(\backslash\backslash \) and // are not possible since the child \(x \) is already restored
- Case 1: \(x \) is \(\backslash \)
 - A left-rotation on \(r \) restores the property!
 - Both \(r \) and \(x \) become \(\backslash \) (easily seen in a drawing)
Insert: single left rotation at r

AVL restore after insert

- Case 2: x is /
 - This is more tricky
 - A left-rotation on r (as before) might cause x to become //
- We need to do a **double** right-left rotation
 - First **right-rotation** on x
 - Then **left-rotation** on r
 - The left-child w of x becomes the new root
 - w becomes –
 - r becomes = or /
 - x becomes = or \n
Insert: double right-left rotation at x and r

AVL restore after insert

- Case 3: x is –
 - This in fact cannot happen!
 - Assume both subtrees of x have height h
 - Then the left subtree of r also must have height (h)
 - Otherwise AVL would be violated **before** the insert (see the drawings)
Symmetric case

- The case when x becomes $//$ is **symmetric**
- We need to consider the BF of its **left-child** x
 - x is $/$: we do a **single right** rotation at r
 - x is \backslash: we do a **double left-right** rotation at x and r
 - x is $___________$: **impossible**

Insert: single right rotation at r

Insert: double left-right rotation at x and r

Insert example
Inserting BRU, causes single right-rotate at ORY

Inserting DUS

Inserting ZRH

Inserting MEX
AVL restore after delete

- Assume \(r \) became \(\backslash \backslash \) after delete (the case // is symmetric)
- Let \(x \) be the root of the right-subtree
 - The value was deleted from the left sub-tree (since \(r \) is \(\backslash \backslash \))
- What can be the balance factor of \(x \)?
 - \(\backslash \backslash \) and // are not possible since the child \(x \) is already restored
- Case 1: \(x \) is \(\backslash \)
 - A **left-rotation** on \(r \) restores the property!
 - Both \(r \) and \(x \) become \(\backslash \) (easily seen in a drawing)

Delete: single left-rotation at \(r \)
AVL restore after delete

• Case 2: \(x \) is \(- \)
 - After a delete this is possible!
 - A left-rotation on \(r \) again restores the property
 - \(r \) becomes \(- \), \(x \) becomes \(/ \)

• We need to do a double right-left rotation
 - First right-rotation on \(x \)
 - Then left-rotation on \(r \)

• The left-child \(w \) of \(x \) becomes the new root
 - \(w \) becomes \(- \)
 - \(r \) becomes \(- \) or \(/ \)
 - \(x \) becomes \(- \) or \(/ \)
Deleting a, causes single left-rotate at d

Deleting m, causes double left-right rotation at d and h

Complexity of operations on AVL trees

- Search on BST is $O(h)$
 - So $O(\log n)$ for AVL, since $h \leq 2 \log n$
- Insert/delete on BST is $O(h)$
 - We add at most one rotation at each step, each rotation is $O(1)$
 - So also $O(\log n)$
- Interesting fact
 - During insert at most one rotation will be performed!
 - Because both rotations we saw decrease the height of the sub-tree
Implementation details

- We need to keep the **height** of each subtree
 - to compute the balance factors
 - If we need to save memory we can store only the balance factors
- Restoring after both insert and delete are similar
 - We can treat them together

Readings