AVL Trees
Balanced trees

• We saw that most of the algorithms in BSTs are $O(h)$
 - But $h = O(n)$ in the worst-case

• So it makes sense to keep trees “balanced”
 - Many different ways to define what “balanced” means
 - In all of them: $h = O(\log n)$

• Eg. **complete** are one type of balanced tree (see Heaps)
 - But it's hard to maintain both BST and complete properties together

• **AVL**: a different type of balanced trees
AVL Trees

• An AVL tree is a BST with an extra property:

 For all nodes: $|\text{height(left-subtree)} - \text{height(right-subtree)}| \leq 1$

• In other words, no subtree can be much shorter/taller than the other

• Recall: **height** is the longest path from the root to some leaf
 - tree with only a root: height 0
 - empty tree: height -1

• Named after Russian mathematicians Adelson-Velskii and Landis
Example – AVL tree
Example – AVL tree
Example – AVL tree
Example – Non-AVL tree
Example – Non-AVL tree
Example – Non AVL tree
The desired property

- In an AVL tree: $h = \mathcal{O}(\log n)$
 - Proving this is not hard

- $n(h)$: **minimum number of nodes** of an AVL tree with height h

- We show that $h \leq 2 \log n(h)$
 - by **induction on** h
 - induction works very well on recursive structures!

- The base cases hold trivially (why?)
 - $n(0) = 1$
 - $n(1) = 2$
The desired property

• Inductive step
 - Assume $\frac{h}{2} \leq \log n(h)$ for all $h < k$
 - Show that it holds for an AVL tree of height $h = k$

• Both subtrees of the root have height at least $h - 2$
 - because of the AVL property!
 - So $n(k) \geq 2n(k - 2)$ (1)

• Induction hypothesis for $h = k - 2$
 - $\frac{k-2}{2} \leq \log n(k - 2)$

• From (1) we take \log on both sides and apply the ind. hypothesis
 - $\log n(k) \geq 1 + \log n(k - 2) \geq 1 + \frac{k-2}{2} = \frac{k}{2}$
Balance factor

A node can have one of the following “balance factors”

<table>
<thead>
<tr>
<th>Balance factor</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Sub-trees have equal heights</td>
</tr>
<tr>
<td>/</td>
<td>Left sub-tree is 1 higher</td>
</tr>
<tr>
<td>//</td>
<td>Left sub-tree is > 1 higher</td>
</tr>
<tr>
<td>\</td>
<td>Right sub-tree is 1 higher</td>
</tr>
<tr>
<td>///</td>
<td>Right sub-tree is > 1 higher</td>
</tr>
</tbody>
</table>

Nodes - , /, \ are AVL.
Nodes ///, /// are not AVL.
Example AVL Tree
Example non-AVL Tree
Example non-AVL Tree
Example non-AVL Tree
Example non-AVL Tree
Operations in an AVL Tree

• Same as those of a BST

• Except that we need to **restore** the AVL property
 - after **inserting** a node
 - or **deleting** a node

• We do this using **rotations**
Recursive AVL restore

• Restoring the AVL property is a **recursive** operation

• It happens during an insert or delete
 - Which are both recursive
 - When their recursive calls are **unwinding** towards the root

• So when we restore a node r, its **children** are already restored **AVL trees**
AVL restore after insert

• Assume r became __ after an insert (the case // is symmetric)

• Let x be the root of the right subtree
 - The new value was inserted under x (since r is __)

• What can be the balance factor of x?
 - __ and // are not possible since the child x is already restored

• Case 1: x is _\
 - A left-rotation on r restores the property!
 - Both r and x become - (easily seen in a drawing)
Insert: single left rotation at r

Tree height $h+3$

New node

Tree height $h+2$
AVL restore after insert

• Case 2: x is /
 - This is more tricky
 - A left-rotation on r (as before) might cause x to become //

• We need to do a **double** right-left rotation
 - First **right-rotation** on x
 - Then **left-rotation** on r

• The left-child w of x becomes the new root
 - w becomes -
 - r becomes - or /
 - x becomes - or \
Insert: double right-left rotation at x and r

One of T_2 or T_3 has the new node and height h
Tree height $h+3$

Tree height $h+2$
AVL restore after insert

• Case 3: \(x \) is -

• This in fact **cannot happen**!
 - Assume both subtrees of \(x \) have height \(h \)
 - Then the left subtree of \(r \) also must have height \((h) \)
 - Otherwise AVL would be violated **before** the insert (see the drawings)
Symmetric case

• The case when x becomes // is symmetric

• We need to consider the BF of its left-child x
 - x is $/ \, \, /$: we do a single right rotation at r
 - x is $\backslash \, \backslash$: we do a double left-right rotation at x and r
 - x is $\, \, \, -$: impossible
Insert: single right rotation at r

New node Tree height h+3

Tree height h+2
Insert: double left-right rotation at \(x \) and \(r \)

One of \(T_2 \) or \(T_3 \) has the new node and height \(h \)

Tree height \(h + 3 \)

Tree height \(h + 2 \)
Insert example
Insert example

Inserting BRU, causes single right-rotate at ORY
Insert example

Inserting DUS
Insert example

Inserting ZRH
Insert example

Inserting MEX
Insert example

Inserting ORD
Inserting NRT, causes double right-left rotation at ORD and MEX
AVL restore after delete

- Assume \(r \) became \(\backslash\backslash \) after an insert (the case \(// \) is symmetric)

- Let \(x \) be the root of the right-subtree
 - The value was deleted from the left sub-tree (since \(r \) is \(\backslash\backslash \))

- What can be the balance factor of \(x \)?
 - \(\backslash\backslash \) and \(// \) are not possible since the child \(x \) is already restored

- Case 1: \(x \) is \(\backslash \)
 - A left-rotation on \(r \) restores the property!
 - Both \(r \) and \(x \) become \(- \) (easily seen in a drawing)
Delete: single left-rotation at r

Height reduced
AVL restore after delete

• Case 2: x is -
 - After a **delete** this is possible!
 - A **left-rotation** on r again restores the property
 - r becomes \backslash, x becomes $/$
Delete: single left-rotation at r

Delete node

\[T_1 \]

\[T_2 \]

\[T_3 \]

h-1

Deleted node

\[\text{Height unchanged} \]
AVL restore after delete

• Case 3: x is /
 - This is more tricky
 - A left-rotation on r (as before) might cause x to become ///

• We need to do a **double** right-left rotation
 - First **right-rotation** on x
 - Then **left-rotation** on r

• The left-child w of x becomes the new root
 - w becomes -
 - r becomes - or /
 - x becomes - or \
Delete: double right-left rotation at r

Before rotation:

- T_1
- T_2
- T_3
- T_4

$h-1$ nodes

Deleted node

After rotation:

- T_1
- T_2
- T_3
- T_4

$h-1$ nodes

Height reduced
Delete example
Delete example

Deleting a, causes single left-rotate at d
Delete example

Deleting m, causes double left-right rotation at d and h
Complexity of operations on AVL trees

• Search on BST is $O(h)$
 - So $O(\log n)$ for AVL, since $h \leq 2 \log n$

• Insert/delete on BST is $O(h)$
 - We add at most one rotation at each step, each rotation is $O(1)$
 - So also $O(\log n)$

• Interesting fact
 - During insert at most one rotation will be performed!
 - Because both rotations we saw decrease the height of the sub-tree
Implementation details

- We need to keep the **height** of each subtree
 - to compute the balance factors
 - If we need to save memory we can store **only** the balance factors
- Restoring after both insert and delete are similar
 - We can treat them together
Readings

