Binary Search Trees

Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού
Κώστας Χατζηκοκολάκης
Search

• Searching for a specific value within a large collection is fundamental

• We want this to be efficient even if we have billions of values!

• So far we have seen two basic search strategies:
 - **sequential** search: slow
 - **binary** search: fast
 ◦ but only for **sorted** data
Sequential search

We already saw that the complexity is $O(n)$.

```c
int sequential_search(int target, int array[], int size) {
    for (int i = 0; i < size; i++)
        if (array[i] == target)
            return i;

    return -1;
}
```
Binary search

```
// Αναζητά τον ακέραιο target στον __ταξινομημένο__ πίνακα target. // Επιστρέφει τη θέση του στοιχείου αν βρεθεί, διαφορετικά -1.

int binary_search(int target, int array[], int size) {
    int low = 0;
    int high = size - 1;

    while (low <= high) {
        int middle = (low + high) / 2;

        if (target == array[middle])
            return middle; // βρέθηκε
        else if (target > array[middle])
            low = middle + 1; // συνεχίζουμε στο πάνω μισό
        else
            high = middle - 1; // συνεχίζουμε στο κάτω μισό
    }

    return -1;
}
```

Important: the array needs to be **sorted**
Binary search example

At each step the search space is cut in half.
Binary search example

```python
def binarySearch(listData, value):
    low = 0
    high = len(listData) - 1
    while (low <= high):
        mid = (low + high) // 2
        if (listData[mid] == value):
            return mid
        elif (listData[mid] < value):
            low = mid + 1
        else:
            high = mid - 1
    return -1
```

At each step the search space is cut in half.
Complexity of binary search

- **Search space**: the elements remaining to search
 - those between low and right

- The size of the search space is **cut in half** at each step
 - After step i there are $\frac{n}{2^i}$ elements remaining

- We **stop** when $\frac{n}{2^i} < 1$
 - in other words when $n < 2^i$
 - or equivalently when $\log n < i$

- So we will do at most $\log n$ steps
 - complexity $O(\log n)$
 - **30 steps** for one billion elements
Conclusions

- Binary search is fundamental for efficient search
- But we need **sorted data**
- Maintaining a sorted array **after an insert** is hard
 - complexity?
- How can we keep data sorted **and simultaneously** allow efficient inserts?
Binary Search Trees (BST)

A binary search tree (δυαδικό δέντρο αναζήτησης) is a binary tree such that:

• every node is larger than all nodes on its left subtree
• every node is smaller than all nodes on its right subtree

Note

• No value can appear twice
 (it would violate the definition)

• Any compare function can be used for ordering.
 (with some mathematical constraints, see the piazza post)
Example
Example

A different tree with the **same values**!
Example

```
ORY
  /   
JFK   ZRH
  /     
BRU   MEX
  /     
ARN   DUS
  /     
ORD   NRT
  /     
GLA
```
BST operations

- Container operations
 - Insert / Remove
- Search for a given value
- Ordered traversal
 - Find first / last
 - Find next / previous
- So we can use BSTs to implement
 - ADTMap (we need search)
 - ADTSet (we need search and ordered traversal)
Search

We perform the following procedure starting at the root

• If the tree is empty
 - \texttt{target} does not exist in the tree

• If \texttt{target} = \texttt{current_node}
 - Found!

• If \texttt{target} < \texttt{current_node}
 - continue in the left subtree

• If \texttt{target} > \texttt{current_node}
 - continue in the right subtree
Search example
Search example

Found: 8

Searching for 8
Search example

Found: 8
Complexity of search

• How many steps will we make in the worst case?
 - We will traverse a path from the root to the tree
 - \(h \) steps max (the height of the tree)

• But how does \(h \) relate to \(n \)?
 - \(h = O(n) \) in the worst case!
 - when the tree is essentially a degenerate “list”
Searching in this tree is slow
Complexity of search

- This is a very common pattern in trees
 - Many operations are $O(h)$
 - Which means worst-case $O(n)$

- Unless we manage to **keep the tree short!**
 - We already saw this in **complete** trees, in which $h \leq \log n$

- Unfortunately maintaining a complete BST is not easy (why?)
 - But there are other methods to achieve the same result
 - AVL, B-Trees, etc
 - We will talk about them later
Inserting a new value

- Inserting a value is **very similar to search**
- We follow the same algorithm as if we were searching for value
 - If value is found we stop (no duplicates!)
 - If we reach an empty subtree insert value there
Insert example
Insert example

Inserting e
Insert example

Inserting b
Insert example

Inserting d
Insert example

Inserting f
Insert example

Inserting a
Insert example

Inserting g
Insert example

Inserting c
Complexity of insert

- Same as search

- $O(h)$
 - So $O(n)$ unless the tree is short
Deleting a value

- We might want to delete any node in a BST
- Easy case: node has as most 1 child
- Connect the child directly to node’s parent
- BST property is preserved (why?)
Deleting a value

- Hard case: **node** has **two children** (eg. 10)
- Find the **next** node in the order (eg. 12)
 - **left-most** node in the right sub-tree!
 (or equivalently the **previous** node)
- We can replace **node**'s value with **next**'s
 - this preserves the BST property (why?)
- And then delete **next**
 - This has to be an **easy** case (why?)
Delete example
Delete example

Delete 4 (easy).
Delete example

Delete 10 (hard). Replace with 7 and it becomes easy.
Complexity of delete

- Finding the node to delete is $O(h)$
- Finding the next / previous is also $O(h)$
Ordered traversal: first/last

- How to find the \textbf{first} node?
 - simply follow left children
 - $O(h)$
 - same for \textbf{last}
Ordered traversal: next

- How to find the next of a given node?
- Easy case: the node has a right child
 - find the left-most node of the right subtree
 - we used this for delete!
- Hard case: no right-child, we need to go up!
Ordered traversal: next

General algorithm for any node. Perform the following procedure starting at the root.

```plaintext
find_next(current_node, node) {
    if (node == current_node) {
        // The target is the root of the subtree, the next is the root of the right subtree (if empty then there is no next)
        return node_find_min(right_child);  // NULL if none exists
    } else if (node > current_node)) {
        // The target is in the left subtree, its predecessor is there.
        return node_find_next(node->right, compare, target);
    } else {
        // The target is in the left subtree, its next can also be there, unless its next is the node.
        res = node_find_next(node->left, compare, target);
        return res != NULL ? res : node;
    }
}
```

// Ψευδοκώδικας, current_node είναι η ρίζα του τρέχοντος υποδέντρου, node είναι ο κόμβος του οποίου τον επόμενο ψάχνουμε.
Complexity of next

• Similar to search, traversing the tree from the root to the leaves
 - so $O(h)$

• We can do it faster by keeping more structure

• We can keep a bidirectional list of all nodes in order
 - $O(1)$ to find next, no extra complexity to update

• More advanced: keep a **link to the parent**
 - Find the next by going **up** when needed
 - Can you find the algorithm?
 - Real-time complexity is still $O(h)$ if we traverse to the root
 - But what about amortized-time?
Rotations

• **Rotation** (περιστροφή) is a fundamental operation in BSTs
 - swaps the role of a **node and one of its children**
 - while still **preserving the BST property**

• **Right rotation**
 - swap a node h and its **left child** x
 - x becomes the root of the subtree
 - the **right** child of x becomes **left** child of h
 - h becomes a **right** child of x

• **Left rotation**
 - symmetric operation with **right** child
Example: right rotation
Example: left rotation

```
Example: left rotation

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

```
Complexity of rotation

• Only changing a few pointers
• No traversal of the tree!
• So $O(1)$
Root insertion

• Goal
 - insert a new element
 - place it at the root of the tree

• Simple recursive algorithm using rotations
 1. If empty: trivial
 2. Recursively insert in the left/right subtree
 - depending on whether the value is smaller than the root or not
 - after the recursive call finishes we have a proper BST
 - with the value as the root of the left/right subtree
 3. Rotate left or right
 - the value comes at the root!
We are inserting G. The recursive algorithm is first called on the root A, then it makes **recursive calls** on the right subtree S, then on E, R, H, and finally a recursive call is made on the empty left subtree of H.
Example: root insertion

G is inserted in the empty left subtree of H.
Example: root insertion

The call on H does a right rotation, G moves up.
Example: root insertion

The call on R does a right rotation, G moves up.
The call on E does a left rotation, G moves up.
Example: root insertion

The call on R does a right rotation, G moves up.
Example: root insertion

The call on A does a left rotation, G arrives at the root.
Complexity of root insertion

• The algorithm is similar to a normal insert
 - traversing the tree towards the leaves: $O(h)$

• With an **extra rotation** at every step
 - which is $O(1)$

• So still $O(h)$
Readings

- T. A. Standish. *Data Structures, Algorithms and Software Principles in C.*
 - Chapter 5. Sections 5.6 and 6.5.
 - Chapter 9. Section 9.7.

- R. Sedgewick. Αλγόριθμοι σε C.
 - Κεφ. 12.

 - Section 9.3 and 10.1