Binary Trees, Heaps

A binary tree (δυαδικό δέντρο) is a set of nodes such that:
- Exactly one node is called the **root**
- All nodes except the root have **exactly one parent**
- Each node has **at most two children**
 - and the are ordered: called **left** and **right**

Example: a binary tree

```
        R
       / \
      S   T
     /   /\ 
    X   Y  U V
   /     /  \
  Z     W
```

Example: a different binary tree

```
        R
       / \
      S   T
     /   /\ 
    X   Y U V
   /     /  \
  Z     W
```

Whether a child is left or right matters.
Terminology

- **path**: sequence of nodes traversing from parent to child (or vice-versa)
- **length** of a path: number of nodes - 1 (= number of "moves" it contains)
- **siblings**: children of the same parent
- **descendants**: nodes reached by travelling downwards along any path
- **ancestors**: nodes reached by travelling upwards towards the root
- **leaf / external node**: a node without children
- **internal node**: a node with children

Nodes

A binary tree can be arranged in **levels / depths**:

- The root is at **level 0**
- Its children are at **level 1**, their children are at **level 2**, etc.

- **height** of the tree: the largest depth of any node
- **subtree** rooted at a node: the tree consisting of that node and its descendants

Complete binary trees

A binary tree is called **complete** (πλήρες) if

- All levels except the last are “full” (have the maximum number of nodes)
- The nodes at the last level fill the level “from left to right”

Example: complete binary tree
Example: not complete binary tree

Level order

Ordering the nodes of a tree level-by-level (and left-to-right in each level).

Nodes of a complete binary tree

- How many nodes does a complete binary tree have at each level?
 - At most
 - 1 at level 0.
 - 2 at level 1.
 - 4 at level 2.
 - \(2^k\) at level \(k\).
Properties of binary trees

- The following hold:
 - \(h + 1 \leq n \leq 2^{h+1} - 1 \)
 - \(1 \leq n_E \leq 2^h \)
 - \(h \leq n_I \leq 2^h - 1 \)
 - \(\log(n+1) - 1 \leq h \leq n - 1 \)

- Where
 - \(n \): number of all nodes
 - \(n_I \): number of internal nodes
 - \(n_E \): number of external nodes (leaves)
 - \(h \): height

Properties of complete binary trees

\[h \leq \log n \]

- Very important property, the tree cannot be too “tall”!

- Why?
 - Any level \(l < h \) contains exactly \(2^l \) nodes
 - Level \(h \) contains at least one node
 - So \(1 + 2 + \ldots + 2^{h-1} + 1 = 2^h - 1 \)
 - And take logarithms on both sides

How do we represent a binary tree?

Sequential representation

Store the entries in an array at level order.

- Common for complete trees
 - A lot of space is wasted for non-complete trees
 - missing nodes will have empty slots in the array
How to find nodes

<table>
<thead>
<tr>
<th>To Find</th>
<th>Use</th>
<th>Provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>The left child of (A[i])</td>
<td>(A[2i])</td>
<td>(2i \leq n)</td>
</tr>
<tr>
<td>The right child of (A[i])</td>
<td>(A[2i + 1])</td>
<td>(2i + 1 \leq n)</td>
</tr>
<tr>
<td>The parent of (A[i])</td>
<td>(A[i/2])</td>
<td>(i > 1)</td>
</tr>
<tr>
<td>The root</td>
<td>(A[1])</td>
<td>(A) is nonempty</td>
</tr>
<tr>
<td>Whether (A[i]) is a leaf</td>
<td></td>
<td>(2i > n)</td>
</tr>
</tbody>
</table>

Heaps

A binary tree is called a **heap** (σωρός) if

- It is **complete**, and
- each node is **greater or equal than its children**

(Sometimes this is called a **max-heap**, we can similarly define a min-heap)

Example

![Binary Tree Diagram](image)

Heaps and priority queues

- Heaps are a common data structure for implementing **Priority Queues**

- The following operations are needed
 - find max
 - insert
 - remove max
 - create with data

- We need to **preserve the heap property** in each operation!
Find max

- Trivial, the max is always at the root
 - remember: we always preserve the heap property
- Complexity?

Inserting a new element

- The new element can only be inserted at the end
 - because a heap must be a complete tree
- Now all nodes except the last satisfy the heap property
 - to restore it: apply the bubble_up algorithm on the last node

Inserting a new element

bubble_up(node)

- Before
 - node might be larger than its parent
 - all other nodes satisfy the heap property
- After
 - all nodes satisfy the heap property
- Algorithm
 - if node > parent
 - swap them and call bubble_up(parent)

Example insertion
Example insertion

Inserting 15 and running bubble_up

Example insertion

Inserting 12 and running bubble_up

Complexity of insertion

- We travel the tree from the last node to the root
 - on each node: 1 step (constant time)
- So we need at most $O(h)$ steps
 - h is the height of the tree
 - but $h \leq \log n$ on a complete tree
- So $O(\log n)$
 - the “complete” property is crucial!

Removing the max element

- We want to remove the root
 - but the heap must be a complete tree
- So swap the root with the last element
 - then remove the last element
- Now all nodes except the root satisfy the heap property
 - to restore it: apply the bubble_down algorithm on the root
Removing the max element

bubble_down(node)

• Before
 - node might be smaller than any of its children
 - all other nodes satisfy the heap property

• After
 - all nodes satisfy the heap property

• Algorithm
 - max_child = the largest child of node
 - If node < max_child
 ◦ swap them and call bubble_down(max_child)

Example removal

Removing 9 and restoring the heap property

Complexity of removal

• We travel a single path from the root to a leaf
• So we need at most $O(h)$ steps
 - h is the height of the tree
• Again $O(\log n)$
 - again, having a complete tree is crucial
Building a heap from initial data

- What if we want to create a heap that contains some initial values?
 - we call this operation heapify

- "Naive" implementation:
 - Create an empty heap and insert elements one by one

- What is the complexity of this implementation?
 - We do n inserts
 - Each insert is $O(\log n)$ (because of bubble_up)
 - So $O(n \log n)$ total

- Worst-case example?
 - sorted elements: each value has to fully bubble_up to the root

Efficient heapify

- Better algorithm:
 - Visit all internal nodes in reverse level order
 - last internal node: $\frac{n}{2}$ (parent of the last leaf n)
 - first internal node: 1 (root)
 - Call bubble_down on each visited node

- Why does this work?
 - When we visit node, its subtree is already a heap
 - except from node itself (the precondition of bubble_down)
 - So bubble_down restores the heap property in the subtree
 - After processing the root, the whole tree is a heap

Heapify example

Visit internal nodes in inverse level order, call bubble_down.
Complexity of heapify

- We call bubble_down $\frac{n}{2}$ times
 - So $O(n \log n)$?
- But this is only an upper-bound
 - bubble_down is faster closer to the leaves
 - and most nodes live there!
 - we might be over-approximating the number of steps

More careful calculation of the number of steps:

- If node is at level l, bubble_down takes at most $h - l$ steps
- At most 2^l nodes at this level, so $(h - l)2^l$ steps for level l
- For the whole tree: $\sum_{l=0}^{h-1} (h - l)2^l$
- This can be shown to be less than $2n$ (exercise if you’re curious)

- So we get worst-case $O(n)$ complexity

Efficient vs naive heapify

- For naive_heapify we found $O(n \log n)$
 - maybe we are also over-approximating?
- No: in the worst-case (sorted elements) we really need $n \log n$ steps
 - try to compute the exact number of steps
- The difference:
 - bubble_up is faster closer to the root, but few nodes live there
 - bubble_down is faster closer to the leaves, and most nodes live there
- Note: in the average-case, the naive version is also $O(n)$

Implementing ADTPriorityQueue

Types

```cpp
// A PriorityQueue is pointer to this struct
struct priority_queue {
    Vector vector;            // The data, in Vector for mutability
    CompareFunc compare;      // The order
    DestroyFunc destroy_value; // Destruction function for an entry
};
```
ADTPriorityQueue implementation

Types.

```c
// Eνα PriorityQueue είναι pointer σε αυτό το struct
struct priority_queue {
    Vector vector;    // Τα δεδομένα, σε Vector για μεταβλη
    CompareFunc compare;  // Η διάταξη
    DestroyFunc destroy_value;  // Συνάρτηση που καταστρέφει ένα στοι
};
```

Finding the max is trivial.

```c
Pointer pqueue_max(PriorityQueue pqueue) {
    return node_value(pqueue, 1);  // root
}
```

For `pqueue_insert`, the non-trivial part is `bubble_up`.

```c
static void bubble_up(PriorityQueue pqueue, int node) {
    // Αποκαθιστά την ιδιότητα του σωρού.
    // Πριν: όλοι οι κόμβοι τυποποιούν την ιδιότητα του σωρού, εκτός από
    // ένα node που μπορεί να είναι _μεγαλύτερος_ από τον πατέρα το
    // Μετά: όλοι οι κόμβοι τυποποιούν την ιδιότητα του σωρού.

    if (node == 1) {
        return;
    }
    int parent = node / 2;  // Ο πατέρας του κόμβου. Τα node ids
    int left_child = 2 * node;
    int right_child = left_child + 1;
    if (left_child <= size) {
        if (pqueue->compare(node_value(pqueue, left_child), node_value(pqueue, node))) {
            node_swap(pqueue, left_child, node);
            bubble_up(pqueue, left_child);
        }
    }
    if (right_child <= size) {
        if (pqueue->compare(node_value(pqueue, right_child), node_value(pqueue, node))) {
            node_swap(pqueue, right_child, node);
            bubble_up(pqueue, right_child);
        }
    }
}
```

For `pqueue_insert`, the non-trivial part is `bubble_up`.

```c
static void bubble_down(PriorityQueue pqueue, int node) {
    // Αποκαθιστά την ιδιότητα του σωρού.
    // Πριν: όλοι οι κόμβοι τυποποιούν την ιδιότητα του σωρού, εκτός από
    // ένα node που μπορεί να είναι _μικρότερος_ από κάποιο από τα παιδιά
    // Μετά: όλοι οι κόμβοι τυποποιούν την ιδιότητα του σωρού.

    int left_child = 2 * node;
    int right_child = left_child + 1;
    if (left_child <= size) {
        if (pqueue->compare(node_value(pqueue, left_child), node_value(pqueue, node))) {
            node_swap(pqueue, left_child, node);
            bubble_down(pqueue, left_child);
        }
    }
    if (right_child <= size) {
        if (pqueue->compare(node_value(pqueue, right_child), node_value(pqueue, node))) {
            node_swap(pqueue, right_child, node);
            bubble_down(pqueue, right_child);
        }
    }
}
```
Other possible representations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Heap</th>
<th>Sorted List</th>
<th>Unsorted Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>pqueue_create (with data)</td>
<td>$O(n)$</td>
<td>$O(n \log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>pqueue_remove</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>pqueue_insert</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

All of them have some advantage

- Heaps provide a great compromise between insertions and removals

Using ADTPriorityQueue for sorting

- We can easily sort data using ADTPriorityQueue
 - create a priority queue with the data
 - remove elements in sorted order
- When ADTPriorityQueue is implemented by a heap
 - this algorithm is called heapsort
 - and runs in time $O(n \log n)$

Readings

- R. Sedgewick. Αλγόριθμοι σε C. Κεφ. 5 και 9.

Proofs of given statements can be found in the following book: