Binary Trees, Heaps

A binary tree (δυαδικό δέντρο) is a set of nodes such that:
- Exactly one node is called the root
- All nodes except the root have exactly one parent
- Each node has at most two children
 - and they are ordered: called left and right

Example: a binary tree

Example: a different binary tree

Whether a child is left or right matters.
Terminology

- **path**: sequence of nodes traversing from parent to child (or vice-versa)
- **length** of a path: number of nodes -1 (= number of “moves” it contains)
- **siblings**: children of the same parent
- **descendants**: nodes reached by travelling downwards along any path
- **ancestors**: nodes reached by travelling upwards towards the root
- **leaf / external node**: a node without children
- **internal node**: a node with children

Nodes tree can be arranged in **levels / depths**:

- The root is at **level 0**
- Its children are at **level 1**, their children are at **level 2**, etc.
- Note: node level = length of the (unique) path from the root to that node

Complete binary trees

A binary tree is called **complete** (νλήρες) if

- All levels except the last are “full” (have the maximum number of nodes)
- The nodes at the last level fill the level “from left to right”

Example: complete binary tree

```plaintext
[Diagram of a complete binary tree]
```
Level order
Ordering the nodes of a tree level-by-level (and left-to-right in each level).

Nodes of a complete binary tree
- How many nodes does a complete binary tree have at each level?
 - At most
 - 1 at level 0.
 - 2 at level 1.
 - 4 at level 2.
 - ...
 - \(2^k\) at level \(k\).
Properties of binary trees

• The following hold:
 - \(h + 1 \leq n \leq 2^{h+1} - 1 \)
 - \(1 \leq n_E \leq 2^h \)
 - \(h \leq n_I \leq 2^h - 1 \)
 - \(\log(n + 1) - 1 \leq h \leq n - 1 \)

• Where
 - \(n \): number of all nodes
 - \(n_I \): number of internal nodes
 - \(n_E \): number of external nodes (leaves)
 - \(h \): height

Properties of complete binary trees

\(h \leq \log n \)

• Very important property, the tree cannot be too "tall!"

• Why?
 - Any level \(l < h \) contains exactly \(2^l \) nodes
 - Level \(h \) contains at least one node
 - So \(1 + 2 + \ldots + 2^{h-1} + 1 = 2^h \leq n \)
 - And take logarithms on both sides

How do we represent a binary tree?

Sequential representation

Store the entries in an array at level order.

- Common for complete trees
- A lot of space is wasted for non-complete trees
 - missing nodes will have empty slots in the array
How to find nodes

<table>
<thead>
<tr>
<th>To Find:</th>
<th>Use</th>
<th>Provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>The left child of $A[i]$</td>
<td>$A[2i]$</td>
<td>$2i \leq n$</td>
</tr>
<tr>
<td>The right child of $A[i]$</td>
<td>$A[2i+1]$</td>
<td>$2i + 1 \leq n$</td>
</tr>
<tr>
<td>The parent of $A[i]$</td>
<td>$A[i/2]$</td>
<td>$i > 1$</td>
</tr>
<tr>
<td>The root</td>
<td>$A[1]$</td>
<td>A is nonempty</td>
</tr>
<tr>
<td>Whether $A[i]$ is a leaf</td>
<td></td>
<td>$2i > n$</td>
</tr>
</tbody>
</table>

Heaps

A binary tree is called a heap (σωρός) if
- It is complete, and
- each node is greater or equal than its children

(Sometimes this is called a max-heap, we can similarly define a min-heap)

Example

Heaps and priority queues

- Heaps are a common data structure for implementing Priority Queues
- The following operations are needed
 - find max
 - insert
 - remove max
 - create with data
- We need to preserve the heap property in each operation!
Find max

- Trivial, the max is always at the root
 - remember: we always preserve the heap property
- Complexity?

Inserting a new element

- The new element can only be inserted at the end
 - because a heap must be a complete tree
- Now all nodes except the last satisfy the heap property
 - to restore it: apply the bubble_up algorithm on the last node

bubble_up(node)

- Before
 - node might be larger than its parent
 - all other nodes satisfy the heap property
- After
 - all nodes satisfy the heap property
- Algorithm
 - if node > parent
 - swap them and call bubble_up(parent)

Example insertion
Example insertion

Inserting 15 and running bubble_up

Example insertion

Inserting 12 and running bubble_up

Complexity of insertion

- We travel the tree from the last node to the root
 - on each node: 1 step (constant time)
- So we need at most $O(h)$ steps
 - h is the height of the tree
 - but $h \leq \log n$ on a complete tree
- So $O(\log n)$
 - the "complete" property is crucial!

Removing the max element

- We want to remove the root
 - but the heap must be a complete tree
- So swap the root with the last element
 - then remove the last element
- Now all nodes except the root satisfy the heap property
 - to restore it: apply the bubble_down algorithm on the root
Removing the max element

\[\text{bubble_down}(\text{node}) \]

- **Before**
 - \text{node} might be \textit{smaller} than any of its children
 - all other nodes satisfy the heap property
- **After**
 - all nodes satisfy the heap property
- **Algorithm**
 - max_child = the \textit{largest child} of \text{node}
 - If node < max_child
 - \textit{swap them} and call \text{bubble_down}(\text{max_child})

Example removal

Removing 9 and restoring the heap property

Complexity of removal

- We travel a single path from the root to a leaf
- So we need at most \(O(h) \) steps
 - \(h \) is the height of the tree
- Again \(O(\log n) \)
 - again, having a complete tree is crucial
Building a heap from initial data

- What if we want to create a heap that contains some initial values?
 - we call this operation heapify

- "Naive" implementation:
 - Create an empty heap and insert elements one by one

- What is the complexity of this implementation?
 - We do \(n \) inserts
 - Each insert is \(O(\log n) \) (because of bubble_up)
 - So \(O(n \log n) \) total

- Worst-case example?
 - sorted elements: each value with have to fully bubble_up to the root

Efficient heapify

- Better algorithm:
 - Visit all internal nodes in reverse level order
 - last internal node: \(\frac{n}{2} \) (parent of the last leaf \(n \))
 - first internal node: 1 (root)
 - Call bubble_down on each visited node

- Why does this work?
 - when we visit node, its subtree is already a heap
 - except from node itself (the precondition of bubble_down)
 - So bubble_down restores the heap property in the subtree
 - After processing the root, the whole tree is a heap

Heapify example

Visit internal nodes in inverse level order, call bubble_down.
Complexity of heapify

- We call bubble_down \(\frac{n}{2} \) times
 - So \(O(n \log n) \)?
- But this is only an upper-bound
 - bubble_down is faster closer to the leaves
 - and most nodes live there!
 - we might be over-approximating the number of steps

Efficient vs naive heapify

- For naive_heapify we found \(O(n \log n) \)
 - maybe we are also over-approximating?
- No: in the worst-case (sorted elements) we really need \(n \log n \) steps
 - try to compute the exact number of steps
- The difference:
 - bubble_up is faster closer to the root, but few nodes live there
 - bubble_down is faster closer to the leaves, and most nodes live there
- Note: in the average-case, the naive version is also \(O(n) \)

Implementing ADTPriorityQueue

Types

```cpp
// Ενα PriorityQueue είναι pointer σε αυτό το struct
struct priority_queue {
    Vector vector; // Τα δεδομένα, σε Vector για μεταβλη
    CompareFunc compare; // Η διάταξη
    DestroyFunc destroy_value; // Συνάρτηση που καταστρέφει ένα στοι
};
```

- More careful calculation of the number of steps:
 - If node is at level \(l \), bubble_down takes at most \(h - l \) steps
 - At most \(2^l \) nodes at this level, so \((h - l)2^l \) steps for level \(l \)
 - For the whole tree: \(\sum_{l=0}^{h-1} (h - l)2^l \)
 - This can be shown to be less than \(2n \) (exercise if you're curious)
- So we get worst-case \(O(n) \) complexity
ADTPriorityQueue implementation

Types.

// Ενα PriorityQueue είναι pointer σε αυτό το struct
struct priority_queue {
 Vector vector; // Τα δεδομένα, σε Vector για μεταβλη
 CompareFunc compare; // Η διάταξη
 DestroyFunc destroy_value; // Συνάρτηση που καταστρέφει ένα στοι
};

Finding the max is trivial.

Pointer pqueue_max(PriorityQueue pqueue) {
 return node_value(pqueue, 1); // root
}

For pqueue_insert, the non-trivial part is bubble_up.

// Αποκαθιστά την ιδιότητα του σωρού.
// Πριν: όλοι οι κόμβοι ικανοποιούν την ιδιότητα του σωρού, εκτός από
// τον node που μπορεί να είναι _μεγαλύτερος_ από τον πατέρα του
// Μετά: όλοι οι κόμβοι ικανοποιούν την ιδιότητα του σωρού.
static void bubble_up(PriorityQueue pqueue, int node) {
 // Αν φτάσαμε στη ρίζα, σταματάμε
 if (node == 1) {
 return;
 }
 int parent = node / 2; // Ο πατέρας του κόμβου. Τα node ids
 // Άν ο πατέρας έχει μικρότερη τιμή από τον κόμβο, swap και συνεχε
 if (pqueue->compare(node_value(pqueue, parent), node_value(pqueue, node)) {
 node_swap(pqueue, parent, node);
 bubble_up(pqueue, parent);
 }
}

// Βρίσκουμε τα παιδιά του κόμβου (αν δεν υπάρχουν σταματάμε)
int left_child = 2 * node;
int right_child = left_child + 1;
int size = pqueue_size(pqueue);
if (left_child > size) {
 return;
}
// Βρίσκουμε το μέγιστο από τα 2 παιδιά
int max_child = left_child;
if (right_child < size && pqueue->compare(node_value(pqueue, left child), node_value(pqueue, right_child)) {
 max_child = right_child;
}
// Αν ο κόμβος είναι μικρότερος από το μέγιστο παιδί, swap και συ
if (pqueue->compare(node_value(pqueue, node), node_value(pqueue, max_child)) {
 node_swap(pqueue, node, max_child);
 bubble_down(pqueue, max_child);
}
Other possible representations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Heap</th>
<th>Sorted List</th>
<th>Unsorted Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>pqueue_create (with data)</td>
<td>$O(n)$</td>
<td>$O(n \log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>pqueue_remove</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>pqueue_insert</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

All of them have *some* advantage

- Heaps provide a great compromise between insertions and removals

Using ADTPriorityQueue for sorting

- We can easily sort data using ADTPriorityQueue
 - create a priority queue with the data
 - remove elements in sorted order
- When ADTPriorityQueue is implemented by a heap
 - this algorithm is called *heapsort*
 - and runs in time $O(n \log n)$

Readings

Proofs of given statements can be found in the following book: