How can we implement ADTVector?

- A Vector can be seen as an abstract resizable “array”
- So it makes sense to implement it using a real array
 - store Vector’s elements in the array
 - vector_get_at, vector_set_at are trivial
- But what about vector_insert_last?
 - Arrays in C have fixed size

Dynamic arrays

- Main idea: resize the array
 - such arrays are called “dynamic” or “growable”
- Problem: we need to copy the previous values
- A possible algorithm for vector_insert_last
 - Allocate memory for size+1 elements
 - Copy the size previous elements
 - Set the new element as last
 - Increase size
- What is the complexity of this?
 - $O(n)$, because of the copy!
 - Can we do better?
Improving the complexity of insert

- **Idea**: allocate *more memory* than we need!
 - eg. allocate memory for 100 "empty" elements
 - **capacity**: total allocated memory
 - **size**: number of inserted elements
 - Insert is $O(1)$ if we have free space (just copy the new value)

- Does this change the complexity?
 - in the **worst-case**?
 - in the **average-case**?

- **No**, for some values of n the operation is still slow!
 - For any values, “average-case” makes no difference

Amortized-time complexity

- We see here the value of *amortized-time* complexity
 - A single execution *can* be slow
 - But “most” are fast
 - In many application we only care about the **average** wrt all executions

- Assume we reserve 100 more elements each time
 - How many steps each insert takes on average?

- Intuitively: $\frac{n}{100}$. So *still* $O(n)$, same complexity!
 - Same for any *constant* number of empty elements k
 - Remember, complexity cares about large n! Think $n \gg k$
 - Can we do better?
How to improve the complexity

- **Idea:** the number of empty elements must depend on n
 - Use more empty elements as the Vector grows!
- Standard approach: reserve $a \cdot n$ extra elements
 - for some constant $a > 1$, called the growth factor
- Common values
 - $a = 2$
 - $a = 1.5$
- In this class we will use $a = 2$
 - we always double the capacity

A property to remember

- Consider the geometric progression with ratio 2
 \[1, 2^1, 2^2, \ldots, 2^n \]
- Summing n terms, we get the next one minus 1
 \[1 + 2^1 + 2^2 + \ldots + 2^n = 2^{n+1} - 1 \]
- So each term is larger than all the previous together!
 - This is important since several quantities double in data structures

From linear to constant time

- We always double the capacity
 - What is the amortized-time complexity of insert?
- We do n insertions starting from an empty Vector
 - Assume the last one was “slow” (the most “unlucky” case)
- How many steps did we perform in total?
 - n steps just for placing each element
 - n steps for the last resize
 - How many for all the previous resizes together?
 \[\frac{n}{2} + \frac{n}{4} + \ldots + 1 = n - 1 \]
- So less than $3n$ in total!
 - On average: $\frac{3n}{n} = O(1)$
- Key point: previous inserts are insignificant compared to the last one
Removing elements

- What about `vector_remove_last`?
- Simplest strategy: just consider the removed space as “empty”
 - `vector_remove_last` is clearly worst-case $O(1)$
 - Insert is not affected (we never reduce the amount of free space)
- Commonly used in practice
 - eg. `std::vector` in C++
- **Problem**: wasted space

Recovering wasted space

- **Idea**: if half of the array becomes empty, resize
 - the opposite of the doubling growing strategy
 - Is this ok?
- Careful
 - this is ok if we only remove
 - but a combination of remove+insert might become slow!
- Think of the following scenario
 - Insert n elements with $n = 2^k$
 - The vector is now full
 - Perform a series of: insert, remove, insert, remove, ...

Better strategy

- **Better strategy**
 - when only $\frac{1}{4}$ of the array is full
 - resize to $\frac{1}{2}$ of the capacity!
 - So we still have “room” to both insert and remove
- We can show that even a combination of insert+remove is $O(1)$ amortized-time
Implementation

Types

// A VectorNode is a pointer to this struct.
struct vector_node {
 Pointer value; // The value of the node.
};

// A Vector is a pointer to this struct
struct vector {
 vector_node array; // The data, an array of struct ve
 int size; // How many elements have we added
 int capacity; // How much space have we allocated
 DestroyFunc destroy_value; // Function to destroy an element
};

Implementation

// Random access is simple, since we have a real array.

Pointer vector_get_at(Vector vec, int pos) {
 return vec->array[pos].value;
}

void vector_set_at(Vector vec, int pos, Pointer value) {
 // If there is a destroy function, call it for the replaced value
 if (value != NULL) { // If the value in the array is not NULL
 vec->destroy_value(vec->array[pos].value);
 }
 vec->array[pos].value = value;
 vec->size++;
}

Implementation

Insert, we just need to deal with resizes.

void vector_insert_last(Vector vec, Pointer value) {
 // Make the array bigger (if necessary), so it can hold more
 // elements. Double it every time (important for performance!)
 if (vec->capacity == vec->size) {
 vec->capacity *= 2;
 vec->array = realloc(vec->array, vec->capacity * sizeof(*vec->array));
 }
 // Make the array bigger and add the element
 vec->array[vec->size].value = value;
 vec->size++;
}
Takeaways

• **Dynamic arrays** are the standard way to implement ADTVector

• Insert is $O(1)$
 - but amortized-time!
 - would you use a dynamic array in the software controlling an Airbus?

• Remove is also $O(1)$
 - also amortized, if we care about recovering wasted space

• Random access (get/set) is always worst-case $O(1)$