How can we implement ADTVector?

- A Vector can be seen as an abstract resizable "array"
- So it makes sense to implement it using a real array
 - store Vector's elements in the array
 - \texttt{vector_get_at}, \texttt{vector_set_at} are trivial
- But what about \texttt{vector_insert_last}?
 - Arrays in C have fixed size

Dynamic arrays

- Main idea: resize the array
 - such arrays are called "dynamic" or "growable"
- \textbf{Problem}: we need to copy the previous values
- A possible algorithm for \texttt{vector_insert_last}
 - Allocate memory for \texttt{size+1} elements
 - Copy the \texttt{size} previous elements
 - Set the new element as last
 - Increase \texttt{size}
- What is the complexity of this?
 - $O(n)$, because of the copy!
 - Can we do better?
Improving the complexity of insert

- **Idea**: allocate *more memory* than we need!
 - e.g., allocate memory for 100 "empty" elements
 - *capacity*: total allocated memory
 - *size*: number of inserted elements
 - Insert is $O(1)$ if we have free space (just copy the new value)

- Does this change the complexity?
 - in the *worst-case*?
 - in the *average-case*?

- **No**, for some values of n the operation is still slow!
 - For any values, "average-case" makes no difference

Amortized-time complexity

- We see here the value of *amortized-time* complexity
 - A single execution can be slow
 - But "most" are fast
 - In many application we only care about the *average* wrt all executions
 - Assume we reserve 100 more elements each time
 - How many steps each insert takes on average?

- Intuitively: $\frac{n}{100}$. *So still* $O(n)$, *same complexity*!
 - Same for any constant number of empty elements k
 - Remember, complexity cares about large n! Think $n \gg k$
 - Can we do better?
How to improve the complexity

- **Idea**: the number of empty elements must depend on n
 - Use more empty elements as the Vector grows!

- Standard approach: reserve $a \cdot n$ extra elements
 - for some constant $a > 1$, called the **growth factor**

- Common values
 - $a = 2$
 - $a = 1.5$

- In this class we will use $a = 2$
 - we always **double** the capacity

A property to remember

- Consider the **geometric progression** with ratio 2
 \[1, 2, 2^2, \ldots, 2^n\]

- Summing n terms, we get the **next one minus 1**
 \[1 + 2^1 + 2^2 + \ldots + 2^n = 2^{n+1} - 1\]

- So each term is larger than all the previous together!
 - This is important since several quantities **double** in data structures

From linear to constant time

- We always **double** the capacity
 - What is the amortized-time complexity of insert?

- We do n insertions starting from an empty Vector
 - Assume the last one was “slow” (the most “unlucky” case)

- How many **steps** did we perform in total?
 - n steps just for placing each element
 - n steps for the **last resize**
 - How many for all the previous resizes together?
 \[\frac{n}{2} + \frac{n}{4} + \ldots + 1 = n - 1\]

- So less than $3n$ in total!
 - On average: \[\frac{3n}{n} = O(1)\]
Removing elements

- What about `vector_remove_last`?
- Simplest strategy: just consider the removed space as “empty”
 - `vector_remove_last` is clearly worst-case $O(1)$
 - Insert is not affected (we never reduce the amount of free space)
- Commonly used in practice
 - eg. `std::vector` in C++
- **Problem**: wasted space

Recovering wasted space

- **Idea**: if half of the array becomes empty, resize
 - the opposite of the doubling growing strategy
 - Is this ok?
- **Careful**
 - this is ok if we only remove
 - but a combination of remove+insert might become slow!
- Think of the following scenario
 - Insert n elements with $n = 2^k$
 - The vector is now full
 - Perform a series of: insert, remove, insert, remove, ...
- **Better strategy**
 - when only $\frac{1}{4}$ of the array is full
 - resize to $\frac{1}{2}$ of the capacity!
 - So we still have “room” to both insert and remove
- We can show that even a combination of insert+remove is $O(1)$ amortized-time
Implementation

Types

```c
// Ένα VectorNode είναι pointer σε αυτό το struct.
struct vector_node {
    Pointer value;       // Η τιμή του κόμβου.
};

// Ένα Vector είναι pointer σε αυτό το struct
struct vector {
    VectorNode array;   // Τα δεδομένα, πίνακας από struct ve
    int size;           // Πόσα στοιχεία έχουμε προσθέσει
    int capacity;       // Πόσο χώρο έχουμε δεσμεύσει
    DestroyFunc destroy_value; // Συνάρτηση που καταστρέφει ένα στοι
};
```

Implementation

Random access is simple, since we have a real array.

```c
Pointer vector_get_at(Vector vec, int pos) {
    return vec->array[pos].value;
}

void vector_set_at(Vector vec, int pos, Pointer value) {
    // Αν υπάρχει συνάρτηση destroy_value, την καλούμε για
    // το στοιχείο που αντικαθίσταται
    if (value != vec->array[pos].value && vec->destroy_value != NULL)
        vec->destroy_value(vec->array[pos].value);
    vec->array[pos].value = value;
}
```

Implementation

Insert, we just need to deal with resizes.

```c
void vector_insert_last(Vector vec, Pointer value) {
    // Μεγαλώνουμε τον πίνακα και προσθέτουμε το στοιχείο
    vec->array[vec->size].value = value;
    vec->size++;
}
```

Implementation

```c
Vector vector_create(int size, DestroyFunc destroy_value) {
    // Αρχικά το vector περιέχει size μη-αρχικοποιημένα στοιχεία, αλλ
    // δεσμεύουμε χώρο για τουλάχιστον VECTOR_MIN_CAPACITY για να απο
    // πολλαπλά resizes
    int capacity = size < VECTOR_MIN_CAPACITY ? VECTOR_MIN_CAPACITY :
                   DestroyFunc destroy_value; // Συνάρτηση που καταστρέφει ένα στοι
    return vec;
}
```
Takeaways

- **Dynamic arrays** are the standard way to implement ADTVector
- Insert is $O(1)$
 - but amortized-time!
 - would you use a dynamic array in the software controlling an Airbus?
- Remove is also $O(1)$
 - also amortized, if we care about recovering wasted space
- Random access (get/set) is always worst-case $O(1)$