How can we implement ADTVector?

- A Vector can be seen as an abstract resizable “array”
- So it makes sense to **implement** it using a **real array**
 - store Vector’s elements in the array
 - `vector_get_at`, `vector_set_at` are trivial
- But what about `vector_insert_last`?
 - Arrays in C have fixed size

Dynamic arrays

- **Main idea**: resize the array
 - such arrays are called “dynamic” or “growable”
- **Problem**: we need to **copy** the previous values
- A possible algorithm for `vector_insert_last`
 - Allocate memory for `size+1` elements
 - Copy the `size` previous elements
 - Set the new element as last
 - Increase `size`
- What is the complexity of this?
 - $O(n)$, because of the copy!
 - Can we do better?
Improving the complexity of insert

- **Idea**: allocate more memory than we need!
 - eg. allocate memory for 100 "empty" elements
 - **capacity**: total allocated memory
 - **size**: number of inserted elements
 - Insert is $O(1)$ if we have free space (just copy the new value)

- Does this change the complexity?
 - in the **worst-case**?
 - in the **average-case**?

- **No**, for some values of n the operation is still slow!
 - For any values, “average-case” makes no difference

Amortized-time complexity

- We see here the value of amortized-time complexity
 - A single execution can be slow
 - But “most” are fast
 - In many application we only care about the average wrt all executions

- Assume we reserve 100 more elements each time
 - How many steps each insert takes on average?

- Intuitively: $\frac{n}{100}$. So still $O(n)$, same complexity!
 - Same for any constant number of empty elements k
 - Remember, complexity cares about large n! Think $n \gg k$
 - Can we do better?
How to improve the complexity

- **Idea**: the number of empty elements must **depend on** n
 - Use more empty elements as the Vector grows!
- Standard approach: reserve $a \cdot n$ extra elements
 - For some constant $a > 1$, called the **growth factor**
- Common values
 - $a = 2$
 - $a = 1.5$
- In this class we will use $a = 2$
 - We always **double** the capacity

A property to remember

- Consider the **geometric progression** with ratio 2

 $1, 2^1, 2^2, \ldots, 2^n$
- Summing n terms, we get the **next one minus 1**

 $1 + 2^1 + 2^2 + \ldots + 2^n = 2^{n+1} - 1$
- So each term is **larger** than all the previous together!
 - This is important since several quantities **double** in data structures

From linear to constant time

- We always **double** the capacity
 - What is the amortized-time complexity of insert?
- We do n insertions starting from an empty Vector
 - Assume the last one was “slow” (the most “unlucky” case)
- How many **steps** did we perform in total?
 - n steps just for placing each element
 - n steps for the **last resize**
 - How many for **all the previous resizes together**?

 $$\frac{n}{2} + \frac{n}{4} + \ldots + 1 = n - 1$$
- So less than $3n$ in total!
 - On average: $\frac{3n}{n} = O(1)$
- Key point: previous inserts are insignificant compared to the last one
Removing elements

• What about `vector_remove_last`?
 • Simplest strategy: just consider the removed space as “empty”
 - `vector_remove_last` is clearly worst-case $O(1)$
 - Insert is not affected (we never reduce the amount of free space)
 • Commonly used in practice
 - eg. `std::vector` in C++
 • **Problem**: wasted space

Recovering wasted space

• **Idea**: if half of the array becomes empty, resize
 - the opposite of the doubling growing strategy
 - Is this ok?
• Careful
 - this is ok if we only remove
 - but a combination of remove+insert might become slow!
• Think of the following scenario
 - Insert n elements with $n = 2^k$
 - The vector is now full
 - Perform a series of: insert, remove, insert, remove, ...

Better strategy

• when only $\frac{1}{4}$ of the array is full
 - resize to $\frac{1}{2}$ of the capacity!
 - So we still have “room” to both insert and remove
• We can show that even a combination of insert+remove is $O(1)$ amortized-time
Implementation

Types

// Ένα VectorNode είναι pointer σε αυτό το struct.
struct vector_node {
 Pointer value; // Η τιμή του κόμβου.
};

// Ενα Vector είναι pointer σε αυτό το struct
struct vector {
 VectorNode array; // Τα δεδομένα, πίνακας από struct ve
 int size; // Πόσα στοιχεία έχουμε προσθέσει
 int capacity; // Πόσο χώρο έχουμε δεσμεύσει
 DestroyFunc destroy_value; // Συνάρτηση που καταστρέφει ένα στοι
};

Implementation

Random access is simple, since we have a real array.

Pointer vector_get_at(Vector vec, int pos) {
 return vec->array[pos].value;
}

void vector_set_at(Vector vec, int pos, Pointer value) {
 // Αν υπάρχει συνάρτηση destroy_value, την καλούμε για
 // το στοιχείο που καταστρέφει ένα στοι
 if (value != vec->array[pos].value && vec->destroy_value != NULL)
 vec->destroy_value(vec->array[pos].value);
 vec->array[pos].value = value;
}

Implementation

Insert, we just need to deal with resizes.

void vector_insert_last(Vector vec, Pointer value) {
 // Μεγαλώνουμε τον πίνακα και προσθέτουμε το στοιχείο
 vec->array[vec->size].value = value;
 vec->size++;
}
Takeaways

- **Dynamic arrays** are the standard way to implement ADTVector
- Insert is $O(1)$
 - but amortized-time!
 - would you use a dynamic array in the software controlling an Airbus?
- Remove is also $O(1)$
 - also amortized, if we care about recovering wasted space
- Random access (get/set) is always worst-case $O(1)$