Graphs (Γράφοι)

Graphs are collections of nodes in which various pairs are connected by line segments. The nodes are usually called vertices (κορυφές) and the line segments edges (ακμές).

• Graphs are more general than trees. Graphs are allowed to have cycles and can have more than one connected component.

• Some authors use the terms nodes (κόμβοι) and arcs (τόξα) instead of vertices and edges.

Example of Graphs (Directed)

Example of Graphs (Undirected)
Examples of Graphs

- Transportation networks
 - **Interesting problem:** What is the path with one or more stops of shortest overall distance connecting a starting city and a destination city?

Examples

- A network of oil pipelines
 - **Interesting problem:** What is the maximum possible overall flow of oil from the source to the destination?

Examples

- The Internet
 - **Interesting problem:** Deliver an e-mail from user A to user B

Examples

- The Web
 - **Interesting problem:** What is the PageRank of a Web site?
Examples

- The Facebook social network
- **Interesting problem**: Are John and Mary connected? What interesting clusters exist?

Formal Definitions

- A **graph** $G = (V, E)$ consists of a set of **vertices** V and a set of **edges** E, where the edges in E are formed from pairs of distinct vertices in V.

- If the edges have directions then we have a **directed graph** (κατευθυνόμενο γράφο) or **digraph**. In this case edges are ordered pairs of vertices e.g., (u, v) and are called **directed**. If (u, v) is a directed edge then u is called its **origin** and v is called its **destination**.

- If the edges do not have directions then we have an **undirected graph** (μη-κατευθυνόμενος γράφο). In this case edges are unordered pairs of vertices e.g., {u, v} and are called **undirected**.

- For simplicity, we will use the directed pair notation noting that in the undirected case (u, v) is the same as (v, u).

- When we say simply graph, we will mean an undirected graph.

Example of a Directed Graph

![Directed Graph Example](image)

$G = (V, E)$

$V = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11$

$E = (1, 2), (1, 3), (2, 5), (3, 4), (5, 4), (5, 6), (6, 70, (8, 9), (8, 10), (10, 11)$

Example of an Undirected Graph

![Undirected Graph Example](image)

$G = (V, E)$

$V = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11$

$E = (1, 2), (1, 3), (2, 5), (3, 4), (5, 4), (5, 6), (6, 70, (8, 9), (8, 10), (10, 11)$
More Definitions

- Two different vertices v_i, v_j in a graph $G = (V, E)$ are said to be adjacent (γειτονικές) if there exists an edge $(v_i, v_j) \in E$.
- An edge is said to be incident (προσπίπτουσα) on a vertex if the vertex is one of the edge's endpoints.
- A path (μονοπάτι) p in a graph $G = (V, E)$, is a sequence of vertices of the form $p = v_1 v_2 \ldots v_n$ ($n \geq 2$) in which each vertex v_i, is adjacent to the next one v_{i+1} (for $1 \leq i \leq n - 1$).
- The length of a path is the number of edges in it.
- A path is simple if each vertex in the path is distinct.
- A cycle is a path $p = v_1 v_2 \ldots v_n$ of length greater than one that begins and ends at the same vertex (i.e., $v_1 = v_n$).

Definitions

- A directed path is a path such that all edges are directed and are traversed along their direction.
- A directed cycle is similarly defined.

Definitions

- A simple cycle is a path that travels through three or more distinct vertices and connects them into a loop.

Example

Four simple cycles: $(1, 2, 3, 1) \ (4, 5, 6, 7, 4) \ (4, 5, 6, 4) \ (4, 6, 7, 4)$
Connectivity and Components

- Two vertices in a graph $G = (V, E)$ are said to be connected (συνδεδεμένες) if there is a path from the first to the second in G.
- Formally, if $x \in V$ and $y \in V$, where $x \neq y$, then x and y are connected if there exists a path $p = v_1 v_2 \ldots v_n \in G$ in such that $x = v_1$ and $y = v_n$.

Example

Two non-simple cycles: $(1, 2, 1) (4, 5, 6, 4, 7, 6, 4)$

Example

A path that is not a cycle: $(1, 2, 4, 6, 8)$

Connectivity and Components

- In the graph $G = (V, E)$, a connected component (συνεκτική συνιστώσα) is a subset S of the vertices V that are all connected to one another.
- A connected component S of G is a maximal connected component (μέγιστη συνεκτική συνιστώσα) provided there is no bigger subset T of vertices in V such that T properly contains S and such that T itself is a connected component of G.
- An undirected graph G can always be separated into maximal connected components S_1, S_2, \ldots, S_n such that $S_i \cap S_j = \emptyset$ whenever $i \neq j$.

Connectivity and Components in Directed Graphs

- A subset S of vertices in a directed graph G is **strongly connected** (ισχυρά συνεκτικό) if for each pair of distinct vertices (v_i, v_j) in S, v_i is connected to v_j and v_j is connected to v_i.

- A subset S of vertices in a directed graph G is **weakly connected** (ασθενώς συνεκτικό) if for each pair of distinct vertices (v_i, v_j) in S, v_i is connected to v_j or v_j is connected to v_i.

Example: A Strongly Connected Digraph

Example: A Weakly Connected Digraph
Degree in Undirected Graphs

- In an undirected graph G the **degree** ($βαθμός$) of vertex x is the number of edges e in which x is one of the endpoints of e.
- The degree of a vertex x is denoted by $\text{deg}(x)$.

Example

- The degree of node 1 is 2.
- The degree of node 4 is 4.
- The degree of node 8 is 1.

Predecessors and Successors in Directed Graphs

- If x is a vertex in a **directed** graph $G = (V, E)$ then the set of **predecessors** ($νοηγούμενων$) of x denoted by $\text{Pred}(x)$ is the set of all vertices $y \in V$ such that $(y, x) \in E$.
- Similarly the set of **successors** ($επόμενων$) of x denoted by $\text{Succ}(x)$ is the set of all vertices $y \in V$ such that $(x, y) \in E$.

In-Degree and Out-Degree in Directed Graphs

- The **in-degree** of a vertex x is the number of predecessors of x.
- The **out-degree** of a vertex x is the number of successors of x.
- We can also define the in-degree and the out-degree by referring to the **incoming** and **outgoing** edges of a vertex.
- The in-degree and out-degree of a vertex x are denoted by $\text{indeg}(x)$ and $\text{outdeg}(x)$ respectively.
Example

The in-degree of node 4 is 2. The out-degree of node 4 is 1.

Proposition

• If G is an undirected graph with m edges, then
 \[\sum_{v \in G} \deg(v) = m. \]

 • Proof?
 - Each edge is counted twice

Proposition

• If G is a directed graph with m edges, then
 \[\sum_{v \in G} \text{indeg}(v) = \sum_{v \in G} \text{outdeg}(v) = m. \]

 • Proof?
 - Each edge is counted once

Proposition

• Let G be a graph with n vertices and m edges. If G is undirected, then
 \[m \leq \frac{n(n-1)}{2} \]
 and if G is directed, then
 \[m \leq n(n - 1). \]

 • Proof?
 - If G is undirected then the maximum degree of a vertex is $n - 1$. Therefore, from the previous proposition about the sum of the degrees, we have $2m \leq n(n - 1)$.
 - If G is directed then the maximum in-degree of a vertex is $n - 1$. Therefore, from the previous proposition about the sum of the in-degrees, we have $m \leq n(n - 1)$.
More definitions

- A subgraph (υπογράφος) of a graph G is a graph H whose vertices and edges are subsets of the vertices and edges of G respectively.
- A spanning subgraph (υπογράφος επικάλυψης) of G is a subgraph of G that contains all the vertices of G.
- A forest (δάσος) is a graph without cycles.
- A free tree (ελεύθερο δένδρο) is a connected forest i.e., a connected graph without cycles. The trees that we studied in earlier lectures are rooted trees (δένδρα με ρίζα) and they are different than free trees.
- A spanning tree (δένδρο επικάλυψης) of a graph is a spanning subgraph that is a free tree.

Example

The thick green lines define a spanning tree of the graph.

The thick green lines define a forest which consists of two free trees.

Graph Representations: Adjacency Matrices

- Let $G = (V, E)$ be a graph. Suppose we number the vertices in V as $v_1, v_2 \ldots v_n$.
- The adjacency matrix (πίνακας γειτνίασης) corresponding to G is an $n \times n$ matrix such that $T[i, j] = 1$ if there is an edge $(v_i, v_j) \in E$, and $T[i, j] = 0$ if there is no such edge in E.
Example

A graph G

The adjacency matrix for graph G

Adjacency Matrices

- The adjacency matrix of an **undirected graph** G is a **symmetric matrix** i.e., $T[i, j] = T[j, i]$ for all and in the range $1 \leq i, j \leq n$.
- The adjacency matrix for a **directed graph** need not be symmetric.

Example

An undirected graph G

The adjacency matrix for graph G

- The diagonal entries in an adjacency matrix (of a directed or undirected graph) are zero, since graphs as we have defined them are not permitted to have looping self-referential edges that connect a vertex to itself.
Adjacency Sets

Another way to define a graph $G = (V, E)$ is to specify adjacency sets (σύνολα γειτνίασης) for each vertex in V.

- Let V_x stand for the set of all vertices adjacent to x in an undirected graph G or the set of all vertices that are successors of x in a directed graph G.
- If we give both the vertex set V and the collection $A = \{V_x | x \in V\}$ of adjacency sets for each vertex in then we have given enough information to define the graph G.

Example Directed Graph

A directed graph G

The sequential adjacency lists for graph G. Notice that vertices are listed in their natural order.

<table>
<thead>
<tr>
<th>Vertex Number</th>
<th>Out Degree</th>
<th>Adjacency list</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2 3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3 4 5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Graph Representations: Adjacency Lists

Another family of representations for a graph uses adjacency lists (λίστες γειτνίασης) to represent the adjacency set for each vertex in the graph.

- The linked adjacency lists for graph G. Notice that vertices in a list are organized according to their natural order.
Example Undirected Graph

An undirected graph G

<table>
<thead>
<tr>
<th>Vertex Number</th>
<th>Degree</th>
<th>Adjacency list</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2 3 5</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1 3 4 5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1 2 4</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2 4</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1 2</td>
</tr>
</tbody>
</table>

The sequential adjacency lists for graph G

Graph Searching

- To search a graph G, we need to visit all vertices of G in some systematic order.
- Each vertex v can be a structure with a bool valued member v. Visited which is initially false for all vertices of G. When we visit v, we will set it to true.

An Algorithm for Graph Searching

```plaintext
void graph_search(G) {
    Let G = (V,E) be a graph
    Let C be an empty container
    for (each vertex x in V) {
        x.visited = false;
        Insert x into C;
    }
    while (C is non-empty) {
        Remove a vertex x from container C;
        if (!x.visited) {
            visit(x);
            x.visited = true;
            for (each vertex w adjacent to x) {
                if (!w.visited)
                    Insert w into C;
            }
        }
    }
}
```

Interesting case: the container C is a stack.

In what order vertices are visited?
Graph Searching

Eg. the container C is a stack.

1
2 3 4
5 6 7 8

The vertices are visited in the order 1, 4, 8, 7, 3, 2, 6, 5.

Depth-First Search (DFS)

• When C is a stack, the tree in the previous example is searched in **depth-first order**.

• **Depth-first search** (αναζήτηση πρώτα κατά βάθος) at a vertex always goes down (by visiting unvisited children) before going across (by visiting unvisited brothers and sisters).

• Depth-first search of a graph is analogous to a **pre-order traversal** of an ordered tree.

Graph Searching

Another interesting case: the container C is a queue.

1
2 3 4
5 6 7 8

What is the order vertices are visited?

Graph Searching

Another interesting case: the container C is a queue.

1
2 3 4
5 6 7 8

The vertices are visited in the order 1, 2, 3, 4, 5, 6, 7 and 8.
Breadth-First Search (BFS)

- When \(C \) is a **queue**, the tree in the previous example is searched in **breadth-first order**.
- **Breadth-first search (αναζήτηση πρώτα κατά πλάτος)** at a vertex always goes broad before going deep.
- Breadth-first traversal of a graph is analogous to a traversal of an ordered tree that visits the nodes of the tree in **level-order**.
- BFS subdivides the vertices of a graph in **levels**. The starting vertex is at level 0, then we have the vertices adjacent to the starting vertex at level 1, then the vertices adjacent to these vertices at level 2 etc.

Example

What is the order of visiting vertices for DFS?

Depth-first search visits the vertices in the order 1, 4, 8, 6, 5, 7, 3 and 2

Example

What is the order of visit for BFS?
Example

Breadth-first search visits the vertices in the order 1, 2, 3, 4, 5, 6, 7 and 8.

Exhaustive Search

- Either the stack version or the queue version of the algorithm `GraphSearch` will visit every vertex in a graph G provided that G consists of a single strongly connected component.
- If this is not the case, then we can enumerate all the vertices of G and run `GraphSearch` starting from each one of them in order to visit all the vertices of G.

```java
void graph_exhaustive_search(G) {
    Let G = (V,E) be a graph.
    for (each vertex v in G) {
        graph_search(G, v)
    }
}
```

Recursive DFS

- DFS can be also written recursively
- The stack is essentially replaced by the function call stack
Recursive DFS

```java
// Ψευδοκώδικας, επίσκεψη όλων των κόμβων του γράφου
void graph_dfs(G) {
    for (each vertex x in V) {
        x.visited = false;
    }
    for (each vertex x in V) {
        if (!x.visited)
            traverse(G, x);
    }
}
void traverse(G, x) {
    visit(x);
    x.visited = true;
    for (each vertex w adjacent to v) {
        if (!w.visited)
            traverse(G, w);
    }
}
```

Example of Recursive DFS

What is the order vertices are visited?

```
1
2
3
4
5
6
7
8
```

Example

The vertices are visited in the order 1, 2, 5, 6, 3, 4, 7 and 8. This is different than the order we got when using a stack!

Complexity of DFS

- DFS as implemented above (with adjacency lists) on a graph with e edges and n vertices has complexity $O(n + e)$.
- To see why observe that on no vertex is `traverse` called more than once, because as soon as we call `traverse` with parameter x, we mark x visited and we never call `traverse` on a vertex that has previously been marked as visited.
- Thus, the total time spent going down the adjacency lists is proportional to the lengths of those lists, that is $O(e)$
- The initialization steps in `graph_dfs` have complexity $O(n)$
- Thus, the total complexity is $O(n + e)$
Complexity of DFS

- If DFS is implemented using an adjacency matrix, then its complexity will be $O(n^2)$.
- If the graph is **dense** (νυκώτικος), that is, it has close to $O(n^2)$ edges the difference of the two implementations is minor as they would both run in $O(n^2)$ time.
- If the graph is **sparse** (αραιός), that is, it has close to $O(n)$ edges, then the adjacency matrix approach would be much slower than the adjacency list approach.

Complexity of BFS

- BFS with adjacency lists has the same complexity as DFS i.e., $O(n + e)$.

Readings

- T. A. Standish. *Data Structures, Algorithms and Software Principles in C*. Chapter 10