Graphs (Γράφοι)

Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού
Κώστας Χατζηκοκολάκης
Graphs

- **Graphs** are collections of nodes in which various pairs are connected by line segments. The nodes are usually called **vertices** (κορυφές) and the line segments **edges** (ακμές).

- Graphs are **more general than trees**. Graphs are allowed to have cycles and can have more than one connected component.

- Some authors use the terms **nodes** (κόμβοι) and **arcs** (τόξα) instead of vertices and edges.
Example of Graphs (Directed)
Example of Graphs (Undirected)
Examples of Graphs

• Transportation networks

• **Interesting problem**: What is the path with one or more stops of shortest overall distance connecting a starting city and a destination city?
Examples

• A network of oil pipelines

Interesting problem: What is the maximum possible overall flow of oil from the source to the destination?
Examples

• The Internet

• **Interesting problem**: Deliver an e-mail from user A to user B
Examples

• The Web

• **Interesting problem**: What is the PageRank of a Web site?
Examples

• The Facebook social network

• **Interesting problem**: Are John and Mary connected? What interesting clusters exist?
Formal Definitions

• A graph $G = (V, E)$ consists of a set of vertices V and a set of edges E, where the edges in E are formed from pairs of distinct vertices in V.

• If the edges have directions then we have a directed graph (κατευθυνόμενο γράφο) or digraph. In this case edges are ordered pairs of vertices e.g., (u, v) and are called directed. If (u, v) is a directed edge then u is called its origin and v is called its destination.

• If the edges do not have directions then we have an undirected graph (μη-κατευθυνόμενος γράφο). In this case edges are unordered pairs of vertices e.g., $\{u, v\}$ and are called undirected.

• For simplicity, we will use the directed pair notation noting that in the undirected case (u, v) is the same as (v, u).

• When we say simply graph, we will mean an undirected graph.
Example of a Directed Graph

\[G = (V, E) \]
\[V = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\} \]
\[E = \{(1, 2), (1, 3), (2, 5), (3, 4), (5, 4), (5, 6), (6, 7), (8, 9), (8, 10), (10, 11)\} \]
Example of an Undirected Graph

\[G = (V, E) \]

\[V = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 \]

\[E = (1, 2), (1, 3), (2, 5), (3, 4), (5, 4), (5, 6), (6, 7), (8, 9), (8, 10), (10, 11) \]
More Definitions

• Two different vertices v_i, v_j in a graph $G = (V, E)$ are said to be adjacent (γειτονικές) if there exists an edge $(v_i, v_j) \in E$.

• An edge is said to be incident (προσπίπτουσα) on a vertex if the vertex is one of the edge's endpoints.

• A path (μονοπάτι) p in a graph $G = (V, E)$, is a sequence of vertices of V of the form $p = v_1 v_2 \ldots v_n, (n \geq 2)$ in which each vertex v_i, is adjacent to the next one v_{i+1} (for $1 \leq i \leq n - 1$).

• The length of a path is the number of edges in it.

• A path is simple if each vertex in the path is distinct.

• A cycle is a path $p = v_1 v_2 \ldots v_n$ of length greater than one that begins and ends at the same vertex (i.e., $v_1 = v_n$).
Definitions

- A **directed path** is a path such that all edges are directed and are traversed along their direction.

- A **directed cycle** is similarly defined.
Definitions

- A **simple cycle** is a path that travels through three or more **distinct** vertices and connects them into a loop.
Example

Four simple cycles:
(1,2,3,1) (4,5,6,7,4) (4,5,6,4) (4,6,7,4)
Example

Two non-simple cycles: $(1,2,1) (4,5,6,4,7,6,4)$
Example

A path that is not a cycle: (1, 2, 4, 6, 8)
Connectivity and Components

• Two vertices in a graph $G = (V, E)$ are said to be connected (συνδεδεμένες) if there is a path from the first to the second in G.

• Formally, if $x \in V$ and $y \in V$, where $x \neq y$, then x and y are connected if there exists a path $p = v_1 v_2 \ldots v_n \in G$ in such that $x = v_1$ and $y = v_n$.
Connectivity and Components

- In the graph $G = (V, E)$, a **connected component (συνεκτική συνιστώσα)** is a subset S of the vertices V that are all connected to one another.

- A connected component S of G is a **maximal connected component (μέγιστη συνεκτική συνιστώσα)** provided there is no bigger subset T of vertices in V such that T properly contains S and such that T itself is a connected component of G.

- An undirected graph G can always be separated into maximal connected components S_1, S_2, \ldots, S_n such that $S_i \cap S_j = \emptyset$ whenever $i \neq j$.
Example of Undirected Graph and its Separation into Two Maximal Connected Components
Connectivity and Components in Directed Graphs

- A subset S of vertices in a directed graph G is **strongly connected (ισχυρά συνεκτικό)** if for each pair of distinct vertices (v_i, v_j) in S, v_i is connected to v_j and v_j is connected to v_i.

- A subset S of vertices in a directed graph G is **weakly connected (ασθενώς συνεκτικό)** if for each pair of distinct vertices (v_i, v_j) in S, v_i is connected to v_j or v_j is connected to v_i.
Example: A Strongly Connected Digraph
Example: A Weakly Connected Digraph
Degree in Undirected Graphs

- In an undirected graph G the degree (βαθμός) of vertex x is the number of edges e in which x is one of the endpoints of e.

- The degree of a vertex x is denoted by $\deg(x)$.
The degree of node 1 is 2.
The degree of node 4 is 4.
The degree of node 8 is 1.
Predecessors and Successors in Directed Graphs

• If \(x \) is a vertex in a directed graph \(G = (V, E) \) then the set of \textit{predecessors} (προηγούμενων) of \(x \) denoted by \(\text{Pred}(x) \) is the set of all vertices \(y \in V \) such that \((y, x) \in E \).

• Similarly the set of \textit{successors} (επόμενων) of \(x \) denoted by \(\text{Succ}(x) \) is the set of all vertices \(y \in V \) such that \((x, y) \in E \).
In-Degree and Out-Degree in Directed Graphs

- The **in-degree** of a vertex x is the number of predecessors of x.
- The **out-degree** of a vertex x is the number of successors of x.
- We can also define the in-degree and the out-degree by referring to the **incoming** and **outgoing** edges of a vertex.
- The in-degree and out-degree of a vertex x are denoted by $\text{indeg}(x)$ and $\text{outdeg}(x)$ respectively.
Example

The in-degree of node 4 is 2. The out-degree of node 4 is 1.
Proposition

• If G is an undirected graph with m edges, then

$$\sum_{v \in G} \text{deg}(v) = m.$$

• Proof?
 - Each edge is counted twice
Proposition

• If is a directed graph with edges, then

\[\sum_{v \in G} \text{indeg}(v) = \sum_{v \in G} \text{outdeg}(v) = m \]

• Proof?
 - Each edge is counted once
Proposition

Let G be a graph with n vertices and m edges. If G is undirected, then $m \leq \frac{n(n-1)}{2}$ and if G is directed, then $m \leq n(n - 1)$.

Proof?

- If G is undirected then the maximum degree of a vertex is $n - 1$. Therefore, from the previous proposition about the sum of the degrees, we have $2m \leq n(n - 1)$.

- If G is directed then the maximum in-degree of a vertex is $n - 1$. Therefore, from the previous proposition about the sum of the in-degrees, we have $m \leq n(n - 1)$.
More definitions

• A **subgraph** (υπογράφος) of a graph G is a graph H whose vertices and edges are subsets of the vertices and edges of G respectively.

• A **spanning subgraph** (υπογράφος επικάλυψης) of G is a subgraph of G that contains all the vertices of G.

• A **forest** (δάσος) is a graph without cycles.

• A **free tree** (ελεύθερο δένδρο) is a connected forest i.e., a connected graph without cycles. The trees that we studied in earlier lectures are **rooted trees** (δένδρα με ρίζα) and they are different than free trees.

• A **spanning tree** (δένδρο επικάλυψης) of a graph is a spanning subgraph that is a free tree.
The thick green lines define a spanning tree of the graph.
The thick green lines define a forest which consists of two free trees.
Graph Representations: Adjacency Matrices

• Let $G = (V, E)$ be a graph. Suppose we number the vertices in V as $v_1, v_2 \ldots v_n$

• The **adjacency matrix** (πίνακας γειτνίασης) corresponding to G is an $n \times n$ matrix such that $T[i, j] = 1$ if there is an edge $(v_i, v_j) \in E$, and $T[i, j] = 0$ if there is no such edge in E.
Example

A graph G

The adjacency matrix for graph G

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Adjacency Matrices

- The adjacency matrix of an **undirected graph** G is a **symmetric matrix** i.e., $T[i, j] = T[j, i]$ for all and in the range $1 \leq i, j \leq n$

- The adjacency matrix for a **directed graph** need not be symmetric.
Adjacency Matrices

- The **diagonal entries** in an adjacency matrix (of a directed or undirected graph) are zero, since graphs as we have defined them are not permitted to have looping self-referential edges that connect a vertex to itself.
Example

An undirected graph G

The adjacency matrix for graph G
Adjacency Sets

• Another way to define a graph $G = (V, E)$ is to specify **adjacency sets** (σύνολα γειτνίασης) for each vertex in V.

• Let V_x stand for the set of all vertices **adjacent** to x in an undirected graph G or the set of all vertices that are **successors** of x in a directed graph G.

• If we give both the vertex set V and the collection $A = \{V_x | x \in V\}$ of adjacency sets for each vertex in then we have given enough information to define the graph G.
Graph Representations: Adjacency Lists

• Another family of representations for a graph uses adjacency lists (λίστες γειτνίασης) to represent the adjacency set V_x for each vertex x in the graph.
Example Directed Graph

A directed graph G

<table>
<thead>
<tr>
<th>Vertex Number</th>
<th>Out Degree</th>
<th>Adjacency list</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2 3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3 4 5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The **sequential** adjacency lists for graph G. Notice that vertices are listed in their **natural order**.
Example Directed Graph

A directed graph G

The **linked** adjacency lists for graph G. Notice that vertices in a list are organized according to their **natural order**.
Example Undirected Graph

An undirected graph G

<table>
<thead>
<tr>
<th>Vertex Number</th>
<th>Degree</th>
<th>Adjacency list</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2 3 5</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1 3 4 5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1 2 4</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2 4</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1 2</td>
</tr>
</tbody>
</table>

The sequential adjacency lists for graph G
Graph Searching

- To search a graph G, we need to visit all vertices of G in some systematic order.

- Each vertex v can be a structure with a `bool` valued member Visited which is initially `false` for all vertices of G. When we visit v, we will set it to `true`.
An Algorithm for Graph Searching

// Ψευδοκώδικας, επίσκεψη όλων των κόμβων του γράφου

```c
void graph_search(G) {
    Let G = (V,E) be a graph
    Let C be an empty container

    for (each vertex x in V) {
        x.visited = false;
    }
    Insert v into C;

    while (C is non-empty) {
        Remove a vertex x from container C;
        if (!x.visited) {
            visit(x);
            x.visited = true;
            for (each vertex w adjacent to x) {
                if (!w.visited))
                    Insert w into C;
            }
        }
    }
}
```
Graph Searching

Interesting case: the container C is a stack.

In what order vertices are visited?
Graph Searching

Eg. the container \mathcal{C} is a stack.

The vertices are visited in the order 1, 4, 8, 7, 3, 2, 6, 5.
Depth-First Search (DFS)

• When C is a stack, the tree in the previous example is searched in **depth-first order**.

• **Depth-first search** (αναζήτηση πρώτα κατά βάθος) at a vertex always goes down (by visiting unvisited children) before going across (by visiting unvisited brothers and sisters).

• Depth-first search of a graph is analogous to a **pre-order traversal** of an ordered tree.
Graph Searching

Another interesting case: the container C is a queue.

What is the order vertices are visited?
Graph Searching

Another interesting case: the container C is a queue.

The vertices are visited in the order 1, 2, 3, 4, 5, 6, 7 and 8.
Breadth-First Search (BFS)

• When C is a queue, the tree in the previous example is searched in **breadth-first order**.

• **Breadth-first search (αναζήτηση πρώτα κατά πλάτος)** at a vertex always goes broad before going deep.

• Breadth-first traversal of a graph is analogous to a traversal of an ordered tree that visits the nodes of the tree in **level-order**.

• BFS subdivides the vertices of a graph in **levels**. The starting vertex is at level 0, then we have the vertices adjacent to the starting vertex at level 1, then the vertices adjacent to these vertices at level 2 etc.
What is the order of visiting vertices for DFS?
Example

Depth-first search visits the vertices in the order 1, 4, 8, 6, 5, 7, 3 and 2
What is the order of visit for BFS?
Example

Breadth-first search visits the vertices in the order 1, 2, 3, 4, 5, 6, 7 and 8.
Exhaustive Search

• Either the stack version or the queue version of the algorithm \texttt{GraphSearch} will visit every vertex in a graph G provided that G consists of a single strongly connected component.

• If this is not the case, then we can enumerate all the vertices of G and run \texttt{GraphSearch} starting from each one of them in order to visit all the vertices of G.
void graph_exhaustive_search(G) {
 Let G = (V,E) be a graph.
 for (each vertex v in G) {
 graph_search(G, v)
 }
}
Recursive DFS

• DFS can be also written recursively

• The stack is essentially replaced by the function call stack
void graph_dfs(G) {
 for (each vertex x in V) {
 x.visited = false;
 }
 for (each vertex x in V) {
 if (!x.visited))
 traverse(G, x);
 }
}

void traverse(G, x) {
 visit(x);
 x.visited = true;
 for (each vertex w adjacent to v) {
 if (!w.visited))
 traverse(G, w);
 }
}
Example of Recursive DFS

What is the order vertices are visited?
Example

The vertices are visited in the order 1, 2, 5, 6, 3, 4, 7 and 8. This is different than the order we got when using a stack!
Complexity of DFS

- DFS as implemented above (with adjacency lists) on a graph with e edges and n vertices has complexity $O(n + e)$.
- To see why observe that on no vertex is `traverse` called more than once, because as soon as we call `traverse` with parameter x, we mark x visited and we never call `traverse` on a vertex that has previously been marked as visited.
- Thus, the total time spent going down the adjacency lists is proportional to the lengths of those lists, that is $O(e)$.
- The initialization steps in `graph_dfs` have complexity $O(n)$.
- Thus, the total complexity is $O(n + e)$.
Complexity of DFS

- If DFS is implemented using an adjacency matrix, then its complexity will be $O(n^2)$.

- If the graph is dense (πυκνός), that is, it has close to $O(n^2)$ edges the difference of the two implementations is minor as they would both run in $O(n^2)$ time.

- If the graph is sparse (αραιός), that is, it has close to $O(n)$ edges, then the adjacency matrix approach would be much slower than the adjacency list approach.
Complexity of BFS

- BFS with adjacency lists has the same complexity as DFS i.e., $O(n + e)$.
Readings

• T. A. Standish. *Data Structures, Algorithms and Software Principles in C*. Chapter 10

