
Hashing (Κατακερματισμός)

K08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού

Κώστας Χατζηκοκολάκης

1

Efficient implementation of ADT Map

We need fast equality search•

Balanced trees•

AVL / B-trees / Red-black / …-

Store (key, value) in each node-

Or any efficient implementation of ADT Set•

Store (key, value) as elements in the set-

The above provide search in • O(log n)

But also ordered traversal, which is not needed!-

Can we do better?•

Yes, using hashing!-

2

Hashing

We need to store a (key, value) pair•

Idea: use the key as an index in an array•

This is easy if key is a small integer•

Insert: simply store value in array[key]-

Find: read array[key]-

Problem: does not work when key is large (or not an integer)•

Solution: apply a hash function that transforms keys to indexes-

3

Example

Keys: integers, eg • 1, 3, 18

Store data in an array of size • M = 7

called a hash table-

Use a simple hash function•

h(k) = k mod 7

A pair (key, value) is stored at index key• h()

4

Table T after Inserting keys , , ,

Table T

0

1

2

3

4

5

6

2 10 14 19

14

2

10

19

Keys are stored in their hash addresses•

The cells of the table are often called buckets (κάδοι)•

5

Insert

Table T

0

1

2

3

4

5

6

24

14

2

10

19

Collision, is already taken• h(24) = 3

Resolution policy•

look at lower locations of the table to find a place for the key-

6

Insert

Table T

0

1 3rd probe

2 2nd probe

3 1st probe

4

5

6

24

14

24 ←

2 ←

10 ←

19

h(24) = 3

7

Insert

Table T

0 3rd probe

1 2nd probe

2 1st probe

3

4

5

6 4th probe

23

14 ←

24 ←

2 ←

10

19

23 ←

h(23) = 2

8

Open Addressing

Open addressing•

The method of inserting colliding keys into empty locations-

Probe•

The inspection of each location-

The locations we examined are called a probe sequence-

Linear probing•

Examine consecutive addresses-

9

Double Hashing

Double hashing uses non-linear probing by computing different probe

decrements for different keys using a second hash function .

•

p(k)

Let us define the following probe decrement function:•

p(k) = max(1, ​)
7

k

10

Insert

Table T

0 2nd probe

1

2

3 1st probe

4 3rd probe

5

6

We use a probe decrement of

24

14 ←

2

10 ←

24 ←

19

h(24) = 3

p(24) = 3

11

Insert

Table T

0

1

2 1st probe

3

4

5

6 2th probe

We use a probe decrement of

23

14

2 ←

10

24

19

23 ←

h(23) = 2
p(23) = 3

12

Collision Resolution by Separate Chaining

The method of collision resolution by separate chaining (χωριστή

αλυσίδωση) uses a linked list to store keys at each table entry.

•

This method should not be chosen if space is at a premium, for example, if

we are implementing a hash table for a mobile device.

•

13

Example

Table T

0

1

2

3

4

5

6

14

2 → 23

10 → 24

19

14

Good Hash Functions

Suppose is a hash table having entries whose addresses lie in the range

0 to .

• T

M − 1

An ideal hashing function maps keys onto table addresses in a

uniform and random fashion.

• h(k)

In other words, for any arbitrarily chosen key, any of the possible table

addresses is equally likely to be chosen.

•

Also, the computation of a hash function should be very fast.•

15

Collisions

A collision between two keys and happens if, when we try to store

both keys in a hash table both keys have the same hash address

.

• k k′

T

h(k) = h(k’)

Collisions are relatively frequent even in sparsely occupied hash tables.•

A good hash function should minimize collisions.•

The von Mises paradox: if there are more than 23 people in a room,

there is a greater than 50% chance that two of them will have the same

birthday .

•

(M = 365)

16

Primary clustering

Linear probing suffers from what we call primary clustering

(πρωταρχική συσταδοποίηση).

•

A cluster (συστάδα) is a sequence of adjacent occupied entries in a hash

table.

•

In open addressing with linear probing such clusters are formed and then

grow bigger and bigger. This happens because all keys colliding in the

same initial location trace out identical search paths when looking for an

empty table entry.

•

Double hashing does not suffer from primary clustering because initially

colliding keys search for empty locations along separate probe sequence

paths.

•

17

Ensuring that Probe Sequences Cover the
Table

In order for the open addressing hash insertion and hash searching

algorithms to work properly, we have to guarantee that every probe

sequence used can probe all locations of the hash table.

•

This is obvious for linear probing.•

Is it true for double hashing?•

18

Choosing Table Sizes and Probe
Decrements

If we choose the table size to be a prime number (πρώτος αριθμός)

and probe decrements to be positive integers in the range

 then we can ensure that the probe sequences cover all table

addresses in the range 0 to exactly once.

• M

1 ≤ p(k) ≤

M

M − 1

19

Good Double Hashing Choices

Choose the table size to be a prime number, and choose probe

decrements, any integer in the range 1 to .

• M

M − 1

Choose the table size to be a power of 2 and choose as probe

decrements any odd integer in the range 1 to .

• M

M − 1

In other words, it is good to choose probe decrements to be relatively

prime with

•

M

20

Deletion

The function for deletion from a hash table is left as an exercise.•

But notice that deletion poses some problems.•

If we delete an entry and leave a table entry with an empty key in its place

then we destroy the validity of subsequent search operations because a

search terminates when an empty key is encountered.

•

As a solution, we can leave the deleted entry in its place and mark it as

deleted (or substitute it by a special entry “available”). Then search

algorithms can treat these entries as not deleted while insert algorithms

can treat them as deleted and insert other entries in their place.

•

However, in this case, if we have many deletions, the hash table can easily

become clogged with entries marked as deleted.

•

21

Load Factor

The load factor (συντελεστής πλήρωσης) of a hash table of size with

 occupied entries is defined by

α M

N

α = ​

M

N

The load factor is an important parameter in characterizing the

performance of hashing techniques.

•

22

Performance Formulas

Hash table of size with exactly occupied entries• M N

load factor - α = ​

M
N

 : average number of probes during a successful search• C ​N

 : average number of probes during an unsuccessful search• C ​N
′

or insertion-

23

Efficiency of Linear Probing

For open addressing with linear probing, we have the following

performance formulas:

•

C ​ =N ​ (1 +
2

1
​)

1 − α

1

C ​’ =N ​ (1 +
2

1
(​))

1 − α

1 2

The formulas are known to apply when the table is up to 70% full (i.e.,

when).

• T

a ≤ 0.7

24

Efficiency of Double Hashing

For open addressing with double hashing, we have the following

performance formulas:

•

C ​ =N ​ ln ​

a

1

1 − α

1

C’ ​ =N ​

1 − α

1

25

Efficiency of Separate Chaining

For separate chaining, we have the following performance formulas:

C ​ =N 1 + ​ α
2

1

C ​ =N
′ α

26

Important

Important consequence of these formulas:

The performance depends only on the load factor • α

Not on the number of keys or the size of the table•

27

Theoretical Results: Apply the Formulas

Let us now compare the performance of the techniques we have seen for

different load factors using the formulas we presented.

•

Experimental results are similar.•

28

Successful Search

Load Factors

0.10 0.25 0.50 0.75 0.90 0.99

Separate chaining 1.05 1.12 1.25 1.37 1.45 1.49

Open/linear probing 1.06 1.17 1.50 2.50 5.50 50.5

Open/double hashing 1.05 1.15 1.39 1.85 2.56 4.65

29

Unsuccessful Search

Load Factors

0.10 0.25 0.50 0.75 0.90 0.99

Separate chaining 0.10 0.25 0.50 0.75 0.90 0.99

Open/linear probing 1.12 1.39 2.50 8.50 50.5 5000

Open/double hashing 1.11 1.33 2.50 4.00 10.0 100.0

30

Complexity of Hashing

Use a hash table that is never more than half-full ()• α ≤ 0.50

If the table becomes more than half-full, we can expand the table by

choosing a new table twice as big and by rehashing the entries in the new

table.

•

Suppose also that we use one of the hashing methods we presented.•

Then the previous tables show that successful search can never take more

than 1.50 key comparisons and unsuccessful search can never take more

than 2.50 key comparisons.

•

So the behaviour of hash tables is independent of the size of the table or

the number of keys, hence the complexity of searching is

•

O(1)

31

Complexity of Hashing

Insertion takes the same number of comparisons as an unsuccessful

search, so it has complexity as well.

•

O(1)

Retrieving and updating also take time.• O(1)

For ordered traversal we must sort the keys (), so hash tables

are not good candidates for ADT Set

• O(n log n)

32

Important observations

1. It can happen that all entries hash to the same index

So the worst-case complexity of search/insert is • O(n)

But the average-case remains • O(1)

Under the assumption of a good hash function-

2. Rehashing takes timeO(n)

So the real-time complexity of insert is • O(n)

But it happens rarely•

So the amortized-time complexity is - O(1)

Similarly to a dynamic array-

33

Complexity, summary

Search Worst-case Average-case

Real-time

Amortized-time

Insert Worst-case Average-case

Real-time

Amortized-time

O(n) O(1)

O(n) O(1)

O(n) O(n)

O(n) O(1)

34

Load Factors and Rehashing

Experiments and average case analysis suggest that we should maintain•

 for open addressing schemes- α < 0.5

 for separate chaining- α < 0.9

With open addressing, as the load factor grows beyond 0.5 and starts

approaching 1, clusters of items in the table start to grow as well.

•

At the limit, when a is close to 1, all table operations have linear

expected running times since, in this case, we expect to encounter a

linear number of occupied cells before finding one of the few remaining

empty cells.

•

35

Load Factors and Rehashing

If the load factor of a hash table goes significantly above a specified

threshold, then it is common to require the table to be resized to regain

the specified load factor. This process is called rehashing

(ανακατακερματισμός) or dynamic hashing (δυναμικός

κατακερματισμός).

•

When rehashing to a new table, a good requirement is having the new

array's size be at least double the previous size.

•

36

Summary: Open Addressing or Separate Chaining?

Open addressing schemes save space but they are not faster.•

As you can see in the above theoretical results (and corresponding

experimental results), the separate chaining method is either competitive

or faster than the other methods depending on the load factor of the

table.

•

So, if memory is not a major issue, the collision handling method of

choice is separate chaining.

•

37

Comparing ADT Map implementations

Search Insert Delete Ordered traversal

Sorted Array

AVL

Hashing

O(log n) O(n) O(n) O(n)

O(log n) O(log n) O(log n) O(n)

O(1) O(1) O(1) O(n log n)

38

Choosing a Good Hash Function

Ideally, a hash function will map keys uniformly and randomly onto the

entire range of the hash table locations with each location being equally

likely to be the target of the function for a randomly chosen key.

•

39

Example of a Bad Choice

Keys•

Strings of 3 ASCII characters-

24-bit integer containing the 3 8-bit bytes-

Use open addressing with double hashing.•

Select a table size • M = 2 =8 256

Define our hashing function as • h(k) = k mod 256

40

Example

This hash function is a poor one because it selects the low-order

character of the three-character key as the value of

•

h(k)

If the key is , when considered as a 24-bit integer, it has the numerical

value

• 321
3 × 256 +2 2 × 256 +1 1 × 2560

Thus when we do the modulo 256 operation, we get the value • 1

41

Example

“Similar” keys create collisions•

h(AAA) = h(ABA) = h(ACA) = h(BAA) = …

Thus this hash function will create and preserve clusters instead of

spreading them as a good hash function will do.

•

Hash functions should take into account all the bits of a key, not just

some of them.

•

42

Hash Functions

Hash function as consisting of two actions:h(k)

Hash code•

Map the key to an integer- k

Compression function•

Map the hash code to the range of indices 0 to - M − 1

43

Hash Codes

The first action that a hash function performs is to take an arbitrary key

and map it into an integer value.

•

This integer need not be in the range 0 to and may even be

negative, but we want the set of hash codes to avoid collisions.

• M − 1

If the hash codes of our keys cause collisions, then there is no hope for

the compression function to avoid them.

•

44

Hash Codes in C

The hash codes described below are based on the assumption that the

number of bits of each data type is known.

•

45

Converting to an Integer

For any data type that is D represented using at most as many bits as our

integer hash codes, we can simply take an integer interpretation of the

bits as a hash code for elements of D.

•

Thus, for the C basic types char, short int and int, we can achieve a

good hash code simply by casting this type to int.

•

46

Converting to an Integer

On many machines, the type long int has a bit representation that is

twice as long as type int.

•

One possible hash code for a long element is to simply cast it down to an

int.

•

But notice that this hash code ignores half of the information present

in the original value. So if many of the keys differ only in these bits, they

will collide using this simple hash code.

•

A better hash code, which takes all the original bits into consideration,

sums an integer representation of the high-order bits with an integer

representation of the low-order bits.

•

47

Converting to an Integer

In general, if we have an object whose binary representation can be

viewed as a k-tuple of integers , we can form a hash

code for as

• x

(x ​, x ​, … , x ​)0 1 k−1

​ x ​∑i=0
k−1

i

Example: Given any floating-point number, we can sum its mantissa and

exponent as long integers and then apply a hash code for long integers to

the result.

•

48

Summation Hash Codes

The summation hash code, described above, is not a good choice for

character strings or other variable-length objects that can be viewed as

tuples of the form where the order of the 's is

significant.

•

(x ​, x ​, … , x ​)0 1 k−1 x ​i

Example: Consider a hash code for a string s that sums the ASCII values of

the characters in s. This hash code produces lots of unwanted collisions

for common groups of strings e.g., temp01 and temp10.

•

A better hash code should take the order of the 's into account.• x ​i

49

Polynomial Hash Codes

Let be an integer constant such that • a ​= 1

We can use the polynomial

as a hash code for .

•

x ​a +0
k−1 x ​a +1

k−2 ⋯ + x ​a +k−2 x ​k−1

(x ​, x ​, … , x ​)0 1 k−1

This is called a polynomial hash code.•

To evaluate the polynomial we should use the efficient Horner's method:•

x ​ +k−1 a(x ​ +k−2 a(x ​ +k−3 ⋯ + a(x ​ +1 ax ​)) …))o

50

Polynomial Hash Codes

Experiments show that in a list of over 50,000 English words, if we choose

 we produce less than seven collisions in each case.

•

a = 33, 37, 39, 41

For the sake of speed, we can apply the hash code to only a fraction of the

characters in a long string.

•

51

Polynomial Hash Codes

// dbj2 hash function

uint hash_string(Pointer value) {
 uint hash = 5381;

 for (char* s = value; *s != '\0'; s++)
hash = (hash * 33)+ *s;

 return hash;
}

52

Polynomial Hash Codes

In theory, we first compute a polynomial hash code and then apply the

compression function modulo M

•

The previous hash function takes the modulo M at each step.•

The two approaches are the same because the following equality holds

for all that are nonnegative integers:

•

a, b, x, M

(((ax) mod M) + b) mod M = (ax + b) mod M

The approach of the previous function is preferable because, otherwise,

we get errors with long strings when the polynomial computation

produces overflows (try it!).

•

53

Hashing Floating Point Quantities

We can achieve a better hashing function for floating point numbers than

casting them down to int as follows.

•

Assuming that a char is stored as an 8-bit byte, we could interpret a 32-

bit float as a four-element character array and use the hashing

functions we discussed for strings.

•

54

Some Applications of Hash Tables

Databases•

Symbol tables in compilers•

Browser caches•

Peer-to-peer systems and torrents (distributed hash tables)•

55

Readings

T. A. Standish. Data Structures, Algorithms and Software Principles in C.

Chapter 11

•

M.T. Goodrich, R. Tamassia and D. Mount. Data Structures and Algorithms

in C++. 2nd edition. Chapter 9

•

R. Sedgewick. Αλγόριθμοι σε C. 3η Αμερικανική Έκδοση. Εκδόσεις

Κλειδάριθμος. Κεφάλαιο 14

•

56

