Creating large programs

- A large program might contain hundreds of thousands lines of code
- Having such a program in a single .c file is not practical
 - Hard to write
 - Hard to read and understand
 - Hard to maintain
 - Slow to compile
- We need to split it in semantically related units

Modules

- A module (ενότητα) is a collection of related data and operations
- They allow achieving abstraction (αφαίρεση), a notion of fundamental importance in programming
- The user of the module only needs to know what the module does
- Only the author of the module needs to know how it is implemented
 - This is useful even when the author and the user are the same person
- They will be used to implement Abstract Data Types later in this course

Information Hiding

- A notion closely related to abstraction
- Since the user does not need to know how the module is implemented, anything not necessary for using the module should be hidden
 - internal data, auxiliary functions, data types, etc
- This allows modifying parts of the program independently
 - a function visible only within the module cannot affect other parts of the program
 - think of changing a car’s tires, it should not affect its engine!
Modules in C

- A module in C is represented by a **header** file `module.h`
 - we already know several modules: `stdio.h`, `string.h`, ...
- It simply **declares** a list of functions
 - also **constants** and **typedefs**
- Describes **what** the module does
 - often with documentation for these functions

Using a C module

- `#include "module.h"`
- Use the provided functions
- As **users**, we don’t need to know how the module is implemented!

```c
#include "module.h"
int main() {
    int array[] = { 4, 35, -2, 1 };  
    printf("min: %d\n", stats_find_min(array, 4));  
    printf("max: %d\n", stats_find_max(array, 4));  
}
```

Implementing a C module

- The module’s **implementation** is provided in a file `module.c`
- `module.c` contains the definitions of all functions declared in `module.h`

```c
#include "stats.h"
int stats_find_min(int array[], int size) {
    int min = INT_MAX;  // "default" τιμή, μεγαλύτερη από όλε
    for(int i = 0; i < size; i++)  
        if(array[i] < min)  
            min = array[i];  // βρέθηκε νέο ελάχιστο
    return min;  
}
```

E.g. A stats.h module with two functions

```c
// stats.h - Απλά στατιστικά στοιχεία για πίνακες
#include <limits.h>     // INT_MIN, INT_MAX
#include "stats.h"

int stats_find_min(int array[], int size);  
int stats_find_max(int array[], int size);
```

- Prefixing all functions with `stats_` is a good practice (why?)
Compiling a program with modules

- Simply compiling `minmax.c` together with `module.c` works
  ```
gcc minmax.c stats.c -o minmax
  ```
- But this compiles both files every time
- What if we change a single file in a program with 1000 `.c` files?

Separate compilation

- We can compile each `.c` file separately to create an `.o` file
- Then `link` all `.o` files together to create the executable
  ```
gcc -c minmax.c -o minmax.o
gcc -c stats.c -o stats.o
gcc minmax.o stats.o -o minmax
  ```
- If we change `minmax.c`, we only need to recompile that file and relink
 - Makefiles make this very easy

Multiple implementations of a module

- The same `module.h` can be implemented in different ways
  ```
  // stats_alt.c - Εναλλακτική υλοποίηση του stats module
  #include "stats.h"

  // Επιστρέφει 1 αν value <= array[i] για κάθε i
  int smaller_than_all(int value, int array[], int size) {
      for(int i = 0; i < size; i++)
          if(value > array[i])
              return 0;
      return 1;
  }

  int stats_find_min(int array[], int size) {
      for(int i = 0; i < size; i++)
          if(smaller_than_all(array[i], array, size))
              return array[i];
  
  return INT_MAX;  // εδώ φτάνουμε μόνο σε περίπτωση κενού array
  ```

Compiling with multiple implementations

- `minmax.c` is compiled without knowing how `stats.h` is implemented
 - this is abstraction!
- We can then link with any implementation we want
  ```
gcc -c minmax.c -o minmax.o

# use the first implementation
gcc -c stats.c -o stats.o
gcc minmax.o stats.o -o minmax

# OR the second
gcc -c stats_alt.c -o stats_alt.o
gcc minmax.o stats_alt.o -o minmax
  ```
Multiple implementations of a module

- All implementations should provide the same high-level behavior
 - So the program will work with any of them
- But one implementation might be **more efficient** than some other
 - This often depends on the specific application
- Which implementation of `stats.h` would you choose?

Good programmers are **lazy**

- they want to spend their time programming, not compiling
- Nobody likes typing the same `gcc` ... commands 100 times
- We can **automate** compilation with a Makefile

A simple Makefile

```plaintext
# Ένα απλό Makefile (με αρκετά προβλήματα)
# Προσοχή στα tabs!
minmax:
gcc -c minmax.c -o minmax.o
gcc -c stats.c -o stats.o
gcc minmax.o stats.o -o minmax
```

- This means: to create the file `minmax` run these commands
- To compile we run `make minmax`
 - or simply `make` to compile the **first** target in the Makefile

A simple Makefile - first problem

- We modify `minmax.c`, but make refuses to rebuild `minmax`

  ```bash
  $ make minmax
  make: 'minmax' is up to date.
  ```

 solution: dependencies

  ```plaintext
  minmax: minmax.c stats.c
  gcc -c minmax.c -o minmax.o
  gcc -c stats.c -o stats.o
  gcc minmax.o stats.o -o minmax
  ```

 - this means: `minmax` depends on `minmax.c`, `stats.c`
 - if any of these files is **newer** (last modification time) than `minmax` itself, the commands are run again!
A simple Makefile - second problem

- We modify `minmax.c`, but `make` recompiles everything
- Solution: separate rules for each file we create

```
minmax.o: minmax.c
        gcc -c minmax.c -o minmax.o
stats.o: stats.c
        gcc -c stats.c -o stats.o
minmax: minmax.o stats.o
        gcc minmax.o stats.o -o minmax
```

- To build `minmax` we need to build `minmax.o`, `stats.o`
 - `minmax.o` depends on `minmax.c` which is newer, so `make` recompiles
 - `stats.o` depends on `stats.c` which is older, so no need to recompile

Implicit rules

- `make` knows how to make `foo.o` if a file `foo.c` exists, by running
  ```
gcc -c foo.c -o foo.o
  ```
- This is called an implicit rule
- So we don’t need rules for `.o` files!

```
minmax: minmax.o stats.o
        gcc minmax.o stats.o -o minmax
```

Variables

- We can use variables to further simplify the Makefile
 - To create a variable: `VAR = ...`
 - To use a variable we write `$VAR` anywhere in the Makefile
- This allows to easily reuse the Makefile

```
# Αρχεία .o (αλλάζουμε απλά σε stats_alt.o για τη δεύτερη υλοποίηση!)
OBJS = minmax.o stats.o

# Το εκτελέσιμο πρόγραμμα
EXEC = minmax

$(EXEC): $(OBJS)
        gcc $(OBJS) -o $(EXEC)
```

CFLAGS variable

- A special variable
 - Passed as arguments to the compiler when compiling a `.o` file using an implicit rule
 - E.g. enable all warnings, treat them as errors, and allow debugging

```
CFLAGS = -Wall -Werror -g
```
Auxiliary rules

- Then don’t really create files but run useful commands
- E.g. we can use `make clean` to delete all files the compiler built
  ```
  clean:
  rm -f $(OBJS) $(EXEC)
  ```
- And `make run` to compile and execute the program with predefined arguments
  ```
  ARGS = arg1 arg2 arg3
  run: $(EXEC)
  ./$(EXEC) $(ARGS)
  ```

Structuring a large project

- As projects grow, having all files in a single directory is not practical
- E.g. we want the same module to be used by many programs
- A simple structure:
<table>
<thead>
<tr>
<th>Directory</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>include</td>
<td>shared modules, used by multiple programs</td>
</tr>
<tr>
<td>modules</td>
<td>module implementations</td>
</tr>
<tr>
<td>programs</td>
<td>executable programs</td>
</tr>
<tr>
<td>tests</td>
<td>unit tests (we’ll talk about these later)</td>
</tr>
<tr>
<td>lib</td>
<td>libraries (we’ll talk about these later)</td>
</tr>
</tbody>
</table>

Putting the pieces together

```bash
# paths
MODULES = ../../modules
INCLUDE = ../../include

# Compile options. Το -I<dir> χρειάζεται για να βρει o gcc τα αρχεία
CFLAGS = -Wall -Werror -g -I$(INCLUDE)

# Άρχεια .o, εκτελέσιμο πρόγραμμα και παράμετροι
OBJS = minmax.o $(MODULES)/stats.o
EXEC = minmax
ARGS =

$(EXEC): $(OBJS)
  gcc $(OBJS) -o $(EXEC)

clean:
  rm -f $(OBJS) $(EXEC)

run: $(EXEC)
  ./$(EXEC) $(ARGS)
```

Editor use in programming

- Programs are plain text files
- Any editor can be used
- But using an editor **efficiently** is important
- It can make the difference between boring and creative programming
Editor types

- Old-school editors: **vim**, **emacs**, …
 - Fast, reliable, very configurable, available everywhere
 - Compiling/debugging is hard, needs tweaking
- IDEs: **Visual Studio**, **Eclipse**, **NetBeans**, **CLion**, …
 - Integrated compiler, debugger and many other tools
 - Too much “magic”, not ideal for learning
- Modern code-editors: **VS Code**, **Sublime Text**, **Atom**, …
 - Good balance between the two
 - Many options, a bit of tweaking is needed

VS Code

- Modern, open-source code editor, available for all major systems
- Made by Microsoft, but it’s completely different than Visual Studio (an IDE)
- Will be used in lectures
 - lecture code is configured for use in VS Code
 - but you are free to use any other editor you want
- Installation **instructions** for all tools used in the class

Configuring VS Code

- **.vscode** dir provided in the lecture code
 - you can copy this directory in any of your projects
- You only need to modify **.vscode/settings.json**

```
{
    "c_project": {
        // Directory στο οποίο βρίσκεται το πρόγραμμα
        "dir": "programs/minmax",
        // Συνομιλία του εκτελέσιμου προγράμματος
        "program": "minmax",
        // Ορίσματα του προγράμματος.
        "arg1": "-4",
        "arg2": "35",
        ...
    }
}
```

Compiling/Executing in VS Code

- **Menu Terminal / Run Task**
 - **Make**: compile executes
 - Errors are nicely displayed
 - **Make**: compile and run executes
  ```
  make <program>
  ./<program> <arg1> <arg2> ...
  ```
 - **Ctrl-Shift-B** executes the default task
Debugging in VS Code

- Set breakpoints (F9)
- F5 to start debugging
- We can examine/modify variables while execution is paused
- We can execute code step by step
- We can see where segmentation faults happen

A few useful VS Code features

- Ctrl-P: quickly open file
- Ctrl-Shift-O: find function
- Ctrl-/: toggle comment
- Ctrl-Shift-F: search/replace in all files
- Ctrl-`: move between code and terminal
- F8: go to next compilation error
- Alt-up, Alt-down: move line(s)

Git

- A system for tracking changes in source code
 - used by most major projects today
- Very useful when multiple developers collaborate in the same code
 - but also for single-developer projects
- We will use it for
 - lecture code
 - labs
 - projects
- We will store repositories in github.com, a popular Git hosting site

Git, main workflow

1. clone a repository, creating a local copy
2. Modify some files
3. commit changes to the local repository
4. push the changes to the remote repository
For multiple developers/machines:
5. pull changes from a different local repository copy
Git, getting started

- Install Git following the instructions
- Configure Git
  ```
  git config --global user.email "you@example.com"
  git config --global user.name "Your Name"
  ```
- Create an account on github.com
- Create an empty (public or private) repository `test-repo` on github.com
 - Check “Initialize this repository with a README”
 - Its URL will be `https://github.com/<username>/test-repo`

Git, cloning a repository

- This will create a directory `test-repo` containing a local repository copy
- Check that `README.md` is present
- Try running `git status` inside `test-repo`

Git, committing changes

- Modify `README.md`
- Run `git status`
 - `README.md` appears as modified
- To commit the changes:
  ```
  git commit -a -m "Change README"
  ```
- `-a` : commit all modified files
- `-m "..."` : assign a message to the commit

Git, adding files

- Create a new file `foo.c`
- Run `git status`
 - `foo.c` appears as untracked
- To add it:
  ```
  git add foo.c
  git commit -m "Add foo.c"
  ```
- Run `git status` again
  ```
  Your branch is ahead of 'origin/master' by 2 commits.
  ```
Git, pushing commits

- Visit (or clone) https://github.com/<username>/test-repo
 - the local changes do not appear
- To push your local commits to the remote repository

 `git push`

Git, pulling commits

- From a different local repository copy (e.g. a different machine)

 `git pull`

- The remote changes are copied to the local repository
- Local changes should be committed before running this
 - They will be merged with the remote ones

.gitignore

- Files listed in the `.gitignore` special file are ignored by Git (blacklist)
- The inverse is often useful
 - save nothing except files in `.gitignore` (whitelist)

```
# Αγνοούμε όλα τα αρχεία (όχι τα directories)
*

# Εκτός από τα παρακάτω
!* .c
!* .h
!* .mk
!Makefile
!.*.gitignore
!README.md
!vscode/*.json
```

Readings

- T. A. Standish. Data Structures, Algorithms and Software Principles in C, Chapter 4
- Robert Sedgewick. Αλγόριθμοι σε C, Κεφ. 4
- `make manual`, Chapter 2
- A beginner's guide to Git
- VS Code introductory videos