Multi-Way Search Trees

Motivation

- We keep the **ordering** idea of BSTs
 - Fast search, by excluding whole subtrees
- And add **more than two children** for each node
 - Gives more flexibility in restructuring the tree
 - And new ways to **keep it balanced**

Multi-way search trees

- d-node: a node with d children
- Each internal d-node stores $d - 1$ ordered values $k_1 < \ldots < k_{d-1}
 - No duplicate values in the whole tree
- All values in a **subtree** lie in-between the corresponding node values
 - For all values l in the i-th subtree: $k_{i-1} < l < k_i$
 - Convention: $k_0 = -\infty$, $k_d = +\infty$
- m-way search tree: all nodes have **at most** m children
 - A BST is a 2-way search tree

Example multi-way search tree

\[
\begin{array}{c}
22 \\
5 10 25 \\
3 4 6 8 14 23 24 27 \\
11 13 17 \\
\end{array}
\]

$m = 3$
Searching in a multi-way search tree

- Simple adaptation of the algorithm for BSTs
- Start from the root, traverse towards the leaves
- In each node, there is a single subtree that can possibly contain a value l
 - The subtree i such that $k_{i-1} < l < k_i$
 - Continue in that subtree

Example multi-way search tree

Search for value 12

Search for value 24

Successful search

Unsuccessful search
Insertion in a multi-way search tree

- Again, simple adaptation of BSTs
 - But: we don’t always need to create a new node
 - We can insert in an existing one if there is space
- Start with a search for the value l we want to insert
 - If found, stop (no duplicates)
 - If not found, insert at the leaf we reached
 - If full, create an i-th child, such that $k_{i-1} < l < k_i$

Insert value 28

Unsuccessful search

$m = 3$

Value 28 inserted

Insert value 32

Unsuccessful search
Value 32 inserted

Insert value 12

Value 12 inserted

Deletion from a multi-way search tree

Left as an exercise.
Complexity of operations

- We need to traverse the tree from the root to a leaf
- The time spent at each node is constant
 - Eg. find i such that $k_{i-1} < l < k_i$
 - Assuming m is fixed!
- So as usual all complexities are $O(n)$
 - $O(h)$ in the worst-case

Balanced multi-way search trees

- Similarly to BSTs we need to keep the tree balanced
 - So that $h = O(\log n)$
- AVL where a kind of balanced BSTs
- We will study two kinds of balanced multi-way search trees:
 - 2-3 trees
 - 2-3-4 trees (also known as (2,4) trees)

2-3 trees

- A 2-3 tree is a 3-way search tree which has the following properties
 - Size property
 - Each node contains 1 or 2 values (so each internal node contains 2 or 3 children)
 - Depth property
 - All leaves have the same depth (lie on the same level)

Example of 2-3 tree
Height of 2-3 trees

- All nodes at all levels except the last one are **internal**
 - And each internal node has at least 2 children
 - So at level i we have at least 2^i nodes
- Hence $n \geq 2^h$, in other words $h = O(\log n)$
- So we can search for an element in time $O(\log n)$
 - Using the standard algorithm for m-way trees

Insertion in 2-3-trees

- We can start by following the generic algorithm for m-way trees
- Search for the value l we want to insert
- If found, stop (no duplicates)
- If not found, insert at the leaf we reached

Search for L

Example: insert B
Example: insert B

- But what if there is **no space at the leaf** (overflow)?
- The standard algorithm will insert a child at the leaf
 - But this **violates the depth property**!
 - The new leaf is not at the same level
- Different strategy
 - **split** the overflowed node into two nodes
 - pass the **middle value** to the parent (**separator** of the two nodes)
- The middle value might **overflow the parent**
 - Same procedure: split and send the middle value up

Example: result

Insertion in 2-3-trees

Example: insert M
Example: insert M

M overflows this node.

The node is split in two and L is passed to the parent node.

L overflows this node.

The node is split in two and L is passed up to the parent.
Example: result

L is inserted in the root node

Example: insert Q

Q overflows this node

Example: insert Q

This node is split up and P is passed up

Example: result
Example: insert R

![Diagram of 2-3 tree with insertion of R]

R is inserted in the node with Q where there is space.

Insertion in 2-3-trees

- The root might also overflow
- Same procedure
 - Split it
 - The middle value moves up, creating a new root
- This is the only operation that increases the tree’s height
 - It increases the depth of all nodes simultaneously
 - 2-3-trees grow at the root, not at the leaves!

Example: insert S

![Diagram of 2-3 tree with insertion of S]

S overflows this node

S overflows this node

Example: insert S

![Diagram of 2-3 tree with insertion of S]

This node is split and R is sent up

This node is split and R is sent up
Example: insert S

- H + L
- D J N P
- R
- A B E F I K M O Q S

Roverflows this node

Example: insert S

- H + L
- D J N P
- R
- A B E F I K M O Q S

This node is split up and P is sent up

Example: insert S

- H + L
- D J N P
- R
- A B E F I K M O Q S

P overflows the root

Example: result

- H + L
- D J N P
- R
- A B E F I K M O Q S

The root splits and L becomes the new root
Complexity of insertion

- We traverse the tree
 - From the root to a leaf when searching
 - From the leaf back to the root while splitting
- Each split takes constant time
 - We do at most $h + 1$ of them
- So in total $O(h) = O(\log n)$ steps
 - Recall, the tree is balanced

($2,4$) trees

- A ($2,4$) tree (or 2-3-4 tree) is a 4-way search tree with 2 extra properties
 - Size property
 - Each node contains between 1 and 3 values
 (so each internal node contains between 2 and 4 children)
 - Depth property
 - All leaves have the same depth (lie on the same level)
- Such trees are balanced
 - $h = O(\log n)$
 - Proof: exercise

Insertion in ($2,4$) trees

- Same as for 2-3-trees
 - Search for the value
 - Insert at a leaf
- In case of an overflow (5-node)
 - Split it into a 3-node and a 2-node
 - Move the separator value k_3 to the parent

Overflow at a 5-node
The separating value is sent to the parent node

Node replaced with a 3-node and a 2-node

Example: insert 4

Example: insert 6
Example: insert 12

4 6 12

Example: insert 15 - overflow

4 6 12 15

Creation of new root node

4 6 15

Split

12

4 6 15
Example: insert 3

Example: insert 5 - overflow

5 is sent to the parent node

Split
Example: insert 10

Example: insert 8

Example

Inserted 11, 13 and 14.

Example: insert 17 - overflow
Split and send 15 to the parent node

The root overflows

Creation of new root

Split
Final tree

![Tree Diagram]

Complexity
- Same as for 2-3-trees
 - At most h splits
 - Each split is constant time
- $O(\log n)$
 - Because the tree is balanced

Removal in (2,4) trees
- To remove a value k_i from an **internal** node
 - Replace with its **predecessor** (or its **successor**)
 - Right-most value in the i-th subtree
 - Similar to the BST case of nodes with two children
- To remove a value from a **leaf**
 - We simply remove it
 - But it might violate the **size** property (**underflow**)

Fixing underflows
Two strategies for fixing an underflow at ν
- Is there an **immediate sibling** w with a “spare” value? (2 or 3 values)
- If so, we do a **transfer** operation
 - Move a value of w to its parent u
 - Move a value of the parent u to ν
- If not, we do a **fusion** operation
 - Merge ν and w, creating a new node ν'
 - Move a value from the parent u to ν'
 - This might **underflow the parent**, continue the same procedure there
Remove 12

Fusion of and

After the fusion
Remove 13

After the removal of 13

Remove 14 - underflow

Fusion
Underflow at

Fusion

Remove the root

Final tree
Readings

- T. A. Standish. *Data Structures, Algorithms and Software Principles in C*. Section 9.9
- R. Sedgewick. *Αλγόριθμοι σε C*. 3η Αμερικανική Έκδοση. Εκδόσεις Κλειδάριθμος. Section 13.3