Multi-Way Search Trees

Кш́бтая Хатそпкоко入а́кпя

Motivation

- We keep the ordering idea of BSTs
- Fast search, by excluding whole subtrees
- And add more than two children for each node
- Gives more flexibility in restructuring the tree
- And news ways to keep it balanced

Multi-way search trees

- d-node: a node with d children
- Each internal d-node stores $d-1$ ordered values $k_{1}<\ldots<k_{d-1}$
- No duplicate values in the whole tree
- All values in a subtree lie in-between the corresponding node values
- For all values l in the i-th subtree: $k_{i-1}<l<k_{i}$
- Convention: $k_{0}=-\infty, k_{d}=+\infty$
- m-way search tree: all nodes have at most m children
- A BST is a 2 -way search tree

Example multi-way search tree

$m=3$

Searching in a multi-way search tree

- Simple adaptation of the algorithm for BSTs
- Start from the root, traverse towards the leaves
- In each node, there is a single subtree that can possibly contain a value l
- The subtree i such that $k_{i-1}<l<k_{i}$
- Continue in that subtree

Example multi-way search tree

Search for value 24

Unsuccessful search

Insertion in a multi-way search tree

- Again, simple adaptation of BSTs
- But: we don't always need to create a new node
- We can insert in an existing one if there is space
- Start with a search for the value l we want to insert
- If found, stop (no duplicates)
- If not found, insert at the leaf we reached
- If full, create an i-th child, such that $k_{i-1}<l<k_{i}$

Insert value 28

$m=3$

Insert value 32

Value 32 inserted

Insert value 12

Unsuccessful Search

Value 12 inserted

Deletion from a multi-way search tree
Left as an exercise.

Complexity of operations

- We need to traverse the tree from the root to a leaf
- The time spent at each node is constant
- Eg. find i such that $k_{i-1}<l<k_{i}$
- Assuming m is fixed!
- So as usual all complexities are $O(h)$
- $O(n)$ in the worst-case

Balanced multi-way search trees

- Similarly to BSTs we need to keep the tree balanced
- So that $h=O(\log n)$
- AVL where a kind of balanced BSTs
- We will study two kinds of balanced multi-way search trees:
- 2-3 trees
- 2-3-4 trees (also known as 2-4 trees)

2-3 trees

- A 2-3 tree is a 3-way search tree which has the following properties
- Size property
- Each node contains $\mathbf{1}$ or $\mathbf{2}$ values
- Internal nodes with n values have exactly $n+1$ children
- Depth property
- All leaves have the same depth (lie on the same level)

Example of 2-3 tree

Height of 2-3 trees

- All nodes at all levels except the last one are internal
- And each internal node has at least 2 children
- So at level i we have at least 2^{i} nodes
- Hence $n \geq 2^{h}$, in other words $h=O(\log n)$
- So we can search for an element in time $O(\log n)$
- Using the standard algorithm for m-way trees

Search for L

Example: insert B

Example: insert B

Example: result

Insertion in 2-3-trees

- But what if there is no space at the leaf (overflow)?
- The standard algorithm will insert a child at the leaf
- But this violates the depth property!
- The new leaf is not at the same level
- Different strategy
- split the overflowed node into two nodes
- pass the middle value to the parent (separator of the two nodes)
- The middle value might overflow the parent
- Same procedure: split and send the middle value up

Example: insert M

Example: insert M

M overflows this node

Example: insert M

The node is split in
two and Lis passed
to the parent node

Example: insert M

Example: result

Example: insert Q

Q overflows

Example: insert Q

This node is split up and P is passed up

Example: result

Example: insert R

R is inserted in the node with Q where there is space.

Example: insert S

S overflows
this node

Insertion in 2-3-trees

- The root might also overflow
- Same procedure
- Split it
- The middle value moves up, creating a new root
- This is the only operation that increases the tree's height
- It increases the depth of all nodes simultaneously
- 2-3-trees grow at the root, not at the leaves!

Example: insert S

Example: insert S

Example: insert S

Example: insert S

Example: result

Complexity of insertion

- We traverse the tree
- From the root to a leaf when searching
- From the leaf back to the root while splitting
- Each split takes constant time
- We do at most $h+1$ of them
- So in total $O(h)=O(\log n)$ steps
- Recall, the tree is balanced

2-4 trees

- A 2-4 tree (or 2-3-4 tree) is a 4-way search tree with 2 extra properties
- Size property
- Each node contains between 1 and 3 values
- Internal nodes with n values have exactly $n+1$ children
- Depth property
- All leaves have the same depth (lie on the same level)
- Such trees are balanced
- $h=O(\log n)$
- Proof: exercise

Overflow at a 5-node

The separating value is sent to the parent node

Node replaced with a 3-node and a 2-node

Example: insert 4
Example: insert 6

Example: insert 12
Example: insert 15 - overflow

Creation of new root node
Split

Example: insert 3
Example: insert 5 - overflow

5 is sent to the parent node

Split

Example: insert 10

Example: insert 8

Example
Example: insert 17 - overflow

Inserted 11, 13 and 14.

Split and send 15 to the parent node

The root overflows

■

Split

Final tree

Complexity

- Same as for 2-3-trees
- At most h splits
- Each split is constant time
- $O(\log n)$
- Because the tree is balanced

Removal in 2-4 trees

- To remove a value k_{i} from an internal node
- Replace with its predecessor (or its successor)
- Right-most value in the i-th subtree
- Similar to the BST case of nodes with two children
- To remove a value from a leaf
- We simply remove it
- But it might viotalate the size property (underflow)

Fixing underflows

Two strategies for fixing an underlow at ν

- Is there an immediate sibling w with a "spare" value? (2 or 3 values)
- If so, we do a transfer operation
- Move a value of w to its parent u
- Move a value of the parent u to ν
- If not, we do a fusion operation
- Merge ν and w, creating a new node ν^{\prime}
- Move a value from the parent u to ν^{\prime}
- This might underflow the parent, continue the same procedure there

Initial tree

Remove 4

Transfer

Remove 12

Remove 12

Fusion of and

After the fusion

Remove 13

After the removal of 13

Fusion

Readings

- T. A. Standish. Data Structures, Algorithms and Software Principles in C. Section 9.9
- M. T. Goodrich, R. Tamassia and D. Mount. Data Structures and Algorithms in C++. Section 10.4
 K入દıסápıӨноц. Section 13.3

