Multi-Way Search Trees

Motivation

- We keep the ordering idea of BSTs
 - Fast search, by excluding whole subtrees
- And add more than two children for each node
 - Gives more flexibility in restructuring the tree
 - And news ways to keep it balanced

Multi-way search trees

- \(d \)-node: a node with \(d \) children
- Each internal \(d \)-node stores \(d - 1 \) ordered values \(k_1 < \ldots < k_{d-1} \)
 - No duplicate values in the whole tree
- All values in a subtree lie in-between the corresponding node values
 - For all values \(l \) in the \(i \)-th subtree: \(k_{i-1} < l < k_i \)
 - Convention: \(k_0 = -\infty, k_d = +\infty \)
- \(m \)-way search tree: all nodes have at most \(m \) children
 - A BST is a 2-way search tree

Example multi-way search tree

\(m = 3 \)
Searching in a multi-way search tree

- Simple adaptation of the algorithm for BSTs
- Start from the root, traverse towards the leaves
- In each node, there is a single subtree that can possibly contain a value l
 - The subtree i such that $k_{i-1} < l < k_i$
 - Continue in that subtree

Example multi-way search tree

Search for value 12

Unsuccessful search

Search for value 24

Successful search
Insertion in a multi-way search tree

- Again, simple adaptation of BSTs
 - **But**: we don’t always need to create a new node
 - We can insert in an existing one if there is space
- Start with a search for the value l we want to insert
 - If found, stop (no duplicates)
 - If not found, insert at the leaf we reached
 - If full, create an i-th child, such that $k_{i-1} < l < k_i$

Insert value 28

Value 28 inserted

Insert value 32

Insert value 32
Value 32 inserted

Value 12 inserted

Insert value 12

Deletion from a multi-way search tree

Left as an exercise.
Complexity of operations

- We need to traverse the tree from the root to a leaf
- The time spent at each node is constant
 - Eg. find i such that $k_{i-1} < l < k_i$
 - Assuming m is fixed!
- So as usual all complexities are $O(h)$
 - $O(n)$ in the worst-case

Balanced multi-way search trees

- Similarly to BSTs we need to keep the tree balanced
 - So that $h = O(\log n)$
- AVL where a kind of balanced BSTs
- We will study two kinds of balanced multi-way search trees:
 - 2-3 trees
 - 2-3-4 trees (also known as (2,4) trees)

2-3 trees

- A 2-3 tree is a 3-way search tree which has the following properties
 - **Size property**
 - Each node contains 1 or 2 values
 (so each internal node contains 2 or 3 children)
 - **Depth property**
 - All leaves have the same depth (lie on the same level)

Example of 2-3 tree

[Diagram of a 2-3 tree]

- H
- D
 - A
 - E
 - F
- I
 - K
 - L
- J
 - N
- O
 - P
Height of 2-3 trees

- All nodes at all levels except the last one are internal
 - And each internal node has at least 2 children
 - So at level i we have at least 2^i nodes
- Hence $n \geq 2^h$, in other words $h = O(\log n)$
- So we can search for an element in time $\mathcal{O}(\log n)$
 - Using the standard algorithm for m-way trees

Insertion in 2-3-trees

- We can start by following the generic algorithm for m-way trees
- Search for the value l we want to insert
 - If found, stop (no duplicates)
 - If not found, insert at the leaf we reached
Insertion in 2-3-trees

- But what if there is no space at the leaf (overflow)?
- The standard algorithm will insert a child at the leaf
 - But this violates the depth property!
 - The new leaf is not at the same level

- Different strategy
 - **split** the overflowed node into two nodes
 - pass the middle value to the parent (separator of the two nodes)

- The middle value might **overflow the parent**
 - Same procedure: split and send the middle value up
Example: insert M

M overflows this node.

The node is split in two and L is passed to the parent node.

L overflows this node.

The node is split in two and L is passed up to the parent.
Example: result

H L

D
J
N

A B E F I K M O P

L is inserted in the root node

Example: insert Q

H L

D
J
N

A B E F I K M O P

O P

Q overflows this node

Example: insert Q

H L

D
J
N

A B E F I K M O P

O Q

This node is split up and P is passed up

Example: result

H L

D
J
N

A B E F I K M O Q

This node is split up and P is passed up
Example: insert R

![Diagram showing insertion of R in a 2-3-tree]

R is inserted in the node with Q where there is space.

Insertion in 2-3-trees

- The **root** might also **overflow**
- **Same procedure**
 - Split it
 - The middle value moves up, creating a **new root**
- This is the **only** operation that **increases** the tree's **height**
 - It increases the depth of **all nodes** simultaneously
 - 2-3-trees grow at the root, not at the leaves!

Example: insert S

![Diagram showing insertion of S in a 2-3-tree]

S overflows this node

Example: insert S

![Diagram showing insertion of S in a 2-3-tree]

S overflows this node

This node is split and R is sent up.
Example: insert S

H + L

D
J
N P
R

A B E F I K M O Q S

Example: insert S

H L

D
J
N P

A B E F I K M O Q S

R overflows this node

Example: insert S

H L

D
J
N P

A B E F I K M O Q S

This node is split up and P is sent up

Example: insert S

H L

D
J
N P

A B E F I K M O Q S

P overflows the root

Example: result

H L

D
J
N P

A B E F I K M O Q S

The root splits and L becomes the new root
Complexity of insertion

- We traverse the tree
 - From the root to a leaf when searching
 - From the leaf back to the root while splitting
- Each split takes constant time
 - We do at most \(h + 1 \) of them
- So in total \(O(h) = O(\log n) \) steps
 - Recall, the tree is balanced

(2,4) trees

- A (2,4) tree (or 2-3-4 tree) is a 4-way search tree with 2 extra properties
- Size property
 - Each node contains between 1 and 3 values
 (so each internal node contains between 2 and 4 children)
- Depth property
 - All leaves have the same depth (lie on the same level)
- Such trees are balanced
 - \(h = O(\log n) \)
 - Proof: exercise

Insertion in (2,4) trees

- Same as for 2-3-trees
 - Search for the value
 - Insert at a leaf
- In case of an overflow (5-node)
 - Split it into a 3-node and a 2-node
 - Move the separator value \(k_3 \) to the parent

Overflow at a 5-node
The separating value is sent to the parent node

Node replaced with a 3-node and a 2-node

Example: insert 4

Example: insert 6
Example: insert 12

Example: insert 15 - overflow

Creation of new root node

Split
Example: insert 3

Example: insert 5 - overflow

5 is sent to the parent node

Split
Example: insert 10

Example: insert 8

Example

Example: insert 17 - overflow

Inserted 11, 13 and 14.
Split and send 15 to the parent node

The root overflows

Creation of new root

Split
Final tree

Complexity

• Same as for 2-3-trees
 • At most \(h \) splits
 • Each split is constant time
• \(O(\log n) \)
 • Because the tree is balanced

Removal in (2,4) trees

• To remove a value \(k_i \) from an internal node
 - Replace with its \textit{predecessor} (or its \textit{successor})
 - Right-most value in the \(i \)-th subtree
 - Similar to the BST case of nodes with two children
• To remove a value from a leaf
 - We simply remove it
 - But it might violate the \textit{size} property (underflow)

Fixing underflows

Two strategies for fixing an underflow at \(\nu \)

• Is there an \textit{immediate sibling} \(\omega \) with a “spare” value? (2 or 3 values)
• If so, we do a \textit{transfer} operation
 - Move a value of \(\omega \) to its parent \(\mu \)
 - Move a value of the parent \(\mu \) to \(\nu \)
• If not, we do a \textit{fusion} operation
 - Merge \(\nu \) and \(\omega \), creating a new node \(\nu' \)
 - Move a value from the parent \(\mu \) to \(\nu' \)
 - This might underflow the parent, continue the same procedure there
Initial tree

Remove 4

Transfer

After the transfer
After the fusion

Fusion of and

Remove 12

Remove 12
Remove 13

After the removal of 13

Remove 14 - underflow

Fusion
Underflow at

Fusion

Remove the root

Final tree
Readings

- T. A. Standish. *Data Structures, Algorithms and Software Principles in C*. Section 9.9
- M. T. Goodrich, R. Tamassia and D. Mount. *Data Structures and Algorithms in C++. Section 10.4*
- R. Sedgewick. *Αλγόριθμοι σε C*. 3η Αμερικανική Έκδοση. Εκδόσεις Κλειδάριθμος. Section 13.3