
Multi-Way Search TreesMulti-Way Search Trees
K08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού

Κώστας Χατζηκοκολάκης

1

MotivationMotivation

We keep the ordering idea of BSTs•

Fast search, by excluding whole subtrees-

And add more than two children for each node•

Gives more flexibility in restructuring the tree-

And news ways to keep it balanced-

2

Multi-way search treesMulti-way search trees

-node: a node with children• d d

Each internal -node stores ordered values • d d − 1 k ​ <1 … < k ​d−1

No duplicate values in the whole tree-

All values in a subtree lie in-between the corresponding node values•

For all values in the -th subtree: - l i k ​ <i−1 l < k ​i

Convention: - k ​ =0 −∞, k ​ =d +∞

-way search tree: all nodes have at most children• m m

A BST is a 2-way search tree-

3

Example multi-way search treeExample multi-way search tree

22

5 10 25

3 4 6 8 14 2723 24

11 13 17

m = 3

4

Searching in a multi-way search treeSearching in a multi-way search tree

Simple adaptation of the algorithm for BSTs•

Start from the root, traverse towards the leaves•

In each node, there is a single subtree that can possibly contain a value • l

The subtree such that - i k ​ <i−1 l < k ​i

Continue in that subtree-

5

Example multi-way search treeExample multi-way search tree

22

5 10 25

3 4 6 8 14 2723 24

11 13 17

6

Search for value 12Search for value 12

22

5 10 25

3 4 6 8 14 2723 24

11 13 17

Unsuccessful search

7

Search for value 24Search for value 24

22

5 10 25

3 4 6 8 14 2723 24

11 13 17
Successful search

8

Insertion in a multi-way search treeInsertion in a multi-way search tree

Again, simple adaptation of BSTs•

But: we don't always need to create a new node-

We can insert in an existing one if there is space-

Start with a search for the value we want to insert• l

If found, stop (no duplicates)•

If not found, insert at the leaf we reached•

If full, create an -th child, such that - i k ​ <i−1 l < k ​i

9

Insert value 28Insert value 28

22

5 10 25

3 4 6 8 14 2723 24

11 13 17
Unsuccessful search

 = 3m

10

Value 28 insertedValue 28 inserted

22

5 10 25

3 4 6 8 14 27 2823 24

11 13 17

11

Insert value 32Insert value 32

22

5 10 25

3 4 6 8 14 27 2823 24

11 13 17
Unsuccessful search

12

Value 32 insertedValue 32 inserted

22

5 10 25

3 4 6 8 14 27 2823 24

11 13 17 32

13

Insert value 12Insert value 12

22

5 10 25

3 4 6 8 14 27 2823 24

11 13 17 32

Unsuccessful Search

14

Value 12 insertedValue 12 inserted

22

5 10 25

3 4 6 8 14 27 2823 24

11 13 17 32

12

15

Deletion from a multi-way search treeDeletion from a multi-way search tree

Left as an exercise.

16

Complexity of operationsComplexity of operations

We need to traverse the tree from the root to a leaf•

The time spent at each node is constant•

Eg. find such that - i k ​ <i−1 l < k ​i

Assuming is fixed!- m

So as usual all complexities are • O(h)

 in the worst-case- O(n)

17

Balanced multi-way search treesBalanced multi-way search trees

Similarly to BSTs we need to keep the tree balanced•

So that - h = O(log n)

AVL where a kind of balanced BSTs•

We will study two kinds of balanced multi-way search trees:•

2-3 trees-

2-3-4 trees (also known as 2-4 trees)-

18

2-3 trees2-3 trees

A 2-3 tree is a 3-way search tree which has the following
properties•

Size property•

Each node contains 1 or 2 values-

Internal nodes with values have exactly children- n n + 1

Depth property•

All leaves have the same depth (lie on the same level)-

19

Example of 2-3 treeExample of 2-3 tree

H

NJD

A E F I K L O P

20

Height of 2-3 treesHeight of 2-3 trees

All nodes at all levels except the last one are internal•

And each internal node has at least 2 children-

So at level we have at least nodes- i 2i

Hence , in other words • n ≥ 2h h = O(log n)

So we can search for an element in time • O(log n)

Using the standard algorithm for -way trees- m

21

Search for LSearch for L

H

NJD

A E F I K L O P

22

Insertion in 2-3-treesInsertion in 2-3-trees

We can start by following the generic algorithm for -way trees• m

Search for the value we want to insert• l

If found, stop (no duplicates)•

If not found, insert at the leaf we reached•

23

Example: insert BExample: insert B

H

NJD

A E F I K L O P

24

Example: insert BExample: insert B

H

NJD

A E F I K L O P

25

Example: resultExample: result

H

NJD

A E F I K L O PB

26

Insertion in 2-3-treesInsertion in 2-3-trees

But what if there is no space at the leaf (overflow)?•

The standard algorithm will insert a child at the leaf•

But this violates the depth property!-

The new leaf is not at the same level-

Different strategy•

split the overflowed node into two nodes-

pass the middle value to the parent (separator of the two nodes)-

The middle value might overflow the parent•

Same procedure: split and send the middle value up-

27

Example: insert MExample: insert M

H

NJD

A E F I K L O PB

28

Example: insert MExample: insert M

H

NJD

A E F I K L O PB

M overflows this node.

29

Example: insert MExample: insert M

H

NJD

A E F I O PB

The node is split in
two and L is passed
to the parent node

MK

L

30

Example: insert MExample: insert M

H

NJD

A E F I O PB

L overflows
this node

MK

L

31

Example: insert MExample: insert M

H

NJD

A E F I M O PB K

L The node is split in
two and L is passed
up to the parent

32

Example: resultExample: result

H

NJD

A E F I M O PB K

L L is inserted in the root node

33

Example: insert QExample: insert Q

H

NJD

A E F I M O PB K

L

Q overflows
this node

34

Example: insert QExample: insert Q

H

NJD

A E F I M PB K

L

P

O Q

This node is split up
and P is passed up

35

Example: resultExample: result

H

NJD

A E F I M PB K

L

P

O Q

36

Example: insert RExample: insert R

H

NJD

A E F I M PB K

L

P

O Q R

R is inserted in the node with Q where there is space.

37

Insertion in 2-3-treesInsertion in 2-3-trees

The root might also overflow•

Same procedure•

Split it-

The middle value moves up, creating a new root-

This is the only operation that increases the tree's height•

It increases the depth of all nodes simultaneously-

2-3-trees grow at the root, not at the leaves!-

38

Example: insert SExample: insert S

H

NJD

A E F I M PB K

L

P

O Q R

S overflows
this node

S overflows this node
39

Example: insert SExample: insert S

H

NJD

A E F I MB K

L

P

O Q

R

S

This node is split
and R is sent up

40

Example: insert SExample: insert S

H

NJD

A E F I MB K

L

P

O Q

R

S

R overflows this
node

41

Example: insert SExample: insert S

H

NJD

A E F I MB K

L This node is split up
and P is sent up

O Q S

R

P

42

Example: insert SExample: insert S

H

NJD

A E F I MB K

L

P overflows the root

O Q S

R

P

43

Example: resultExample: result

H

NJD

A E F I MB K O Q S

The root splits and
L becomes the new root

R

P

L

44

Complexity of insertionComplexity of insertion

We traverse the tree•

From the root to a leaf when searching-

From the leaf back to the root while splitting-

Each split takes constant time•

We do at most of them- h + 1

So in total steps• O(h) = O(log n)

Recall, the tree is balanced-

45

2-4 trees2-4 trees

A 2-4 tree (or 2-3-4 tree) is a 4-way search tree with 2 extra properties•

Size property•

Each node contains between 1 and 3 values-

Internal nodes with values have exactly children- n n + 1

Depth property•

All leaves have the same depth (lie on the same level)-

Such trees are balanced•

- h = O(log n)

Proof: exercise-

46

Insertion in 2-4 treesInsertion in 2-4 trees

Same as for 2-3-trees•

Search for the value-

Insert at a leaf-

In case of an overflow (5-node)•

Split it into a 3-node and a 2-node-

Move the separator value to the parent- k ​3

47

Overflow at a 5-nodeOverflow at a 5-node

v1 v2 v3 v4 v5

k1 k2 k3 k4

ℎ1 ℎ2 u

v = u2 u3u1

48

The separating value is sent to the parent nodeThe separating value is sent to the parent node

v1 v2 v3 v4 v5

k1 k2 k4

ℎ1 ℎ2 u

v = u2
k3

u1 u3

49

Node replaced with a 3-node and a 2-nodeNode replaced with a 3-node and a 2-node

v1 v2 v3 v4
v5

ℎ1 k3 ℎ2 u

u1 u4

k1 k2 k4

v ′ = u2 v ′ ′ = u3

50

Example: insert 4Example: insert 4

4

51

Example: insert 6Example: insert 6

4 6

52

Example: insert 12Example: insert 12

4 6 12

53

Example: insert 15 - overflowExample: insert 15 - overflow

4 6 12 15

54

Creation of new root nodeCreation of new root node

4 6 15

12

55

SplitSplit

4 6

12

15

56

Example: insert 3Example: insert 3

3 4 6

12

15

57

Example: insert 5 - overflowExample: insert 5 - overflow

3 4 5 6

12

15

58

5 is sent to the parent node5 is sent to the parent node

3 4 6

12

15

5

59

SplitSplit

3 4

5 12

156

60

Example: insert 10Example: insert 10

3 4

5 12

156 10

61

Example: insert 8Example: insert 8

3 4

5 12

156 8 10

62

ExampleExample

3 4

5 10 12

6 8 11 13 14 15

Inserted 11, 13 and 14.

63

Example: insert 17 - overflowExample: insert 17 - overflow

3 4

5 10 12

6 8 11 13 14 15 17

64

Split and send 15 to the parent nodeSplit and send 15 to the parent node

3 4

5 10 12

6 8 11 13 14 17

15

65

The root overflowsThe root overflows

3 4

5 10 12 15

6 8 11 13 14 17

66

Creation of new rootCreation of new root

3 4

5 10 15

6 8 11 13 14 17

12

67

SplitSplit

3 4 6 8 11 13 14 17

12

5 10 15

68

Final treeFinal tree

3 4 6 8 11 13 14 17

12

5 10 15

69

ComplexityComplexity

Same as for 2-3-trees•

At most splits- h

Each split is constant time-

• O(log n)

Because the tree is balanced-

70

Removal in 2-4 treesRemoval in 2-4 trees

To remove a value from an internal node• k ​i

Replace with its predecessor (or its successor)-

Right-most value in the -th subtree- i

Similar to the BST case of nodes with two children-

To remove a value from a leaf•

We simply remove it-

But it might viotalate the size property (underflow)-

71

Fixing underflowsFixing underflows

Two strategies for fixing an underlow at ν

Is there an immediate sibling with a “spare” value? (2 or 3 values)• w

If so, we do a transfer operation•

Move a value of to its parent - w u

Move a value of the parent to - u ν

If not, we do a fusion operation•

Merge and , creating a new node - ν w ν′

Move a value from the parent to - u ν′

This might underflow the parent, continue the same procedure there-

72

Initial treeInitial tree

4 6 8 11 13 14 17

12

5 10 15

73

Remove 4Remove 4

4

6 8 11 13 14 17

12

5 10 15

v

74

TransferTransfer

8 11 13 14 17

12

10 15

6
5

v
w

u

75

After the transferAfter the transfer

8 11 13 14 17

12

6 10 15

5v
w

u

76

Remove 12Remove 12

8 11 13 14 17

12

6 10 15

5v
w

u

77

Remove 12Remove 12

8

11

13 14 17

12

6 10 15

5v
w

78

Fusion of andFusion of and

8 13 14 17

6 15

5v
w

11

v

10

u

79

After the fusionAfter the fusion

8 10 13 14 17

6 15

5

11

80

Remove 13Remove 13

8 10 14 17

6 15

5

11

13

81

After the removal of 13After the removal of 13

8 10 14 17

6 15

5

11

82

Remove 14 - underflowRemove 14 - underflow

8 10

14

17

6 15

5

11

83

FusionFusion

8 10 17

6

15

5
v

11

u

84

Underflow atUnderflow at

8 10 15 17

6

5

11

u

85

FusionFusion

8 10 15 17

6

5

11 u

86

Remove the rootRemove the root

8 10 15 17

6 11

5

87

Final treeFinal tree

8 10 15 17

6 11

5

88

ReadingsReadings

T. A. Standish. Data Structures, Algorithms and Software Principles in
C.
Section 9.9

•

M. T. Goodrich, R. Tamassia and D. Mount. Data Structures and
Algorithms
in C++. Section 10.4

•

R. Sedgewick. Αλγόριθμοι σε C. 3η Αμερικανική Έκδοση. Εκδόσεις
Κλειδάριθμος. Section 13.3

•

89

