Multi-Way Search Trees
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Motivation

* We keep the ordering idea of BSTs

- Fast search, by excluding whole subtrees

+ And add more than two children for each node
- Gives more flexibility in restructuring the tree

- And news ways to keep it balanced

Multi-way search trees

* d-node: a node with d children

* Each internal d-node storesd — 1 ordered values k; < ... < kg—1
- No duplicate values in the whole tree

+ Allvaluesin a subtree lie in-between the corresponding node values
- Forallvalueslinthei-th subtree: k;_; <1 < k;
- Convention: ky = —00, kg = +00

* m-way search tree: all nodes have at most m children

- ABSTisa2-way search tree

Example multi-way search tree




Searching in a multi-way search tree

+ Simple adaptation of the algorithm for BSTs
« Start from the root, traverse towards the leaves

* In each node, there is a single subtree that can possibly contain a value [
- Thesubtreeisuchthat k1 <1 < k;

- Continuein that subtree

Example multi-way search tree

Search for value 12

Unsuccessful search

Search for value 24




Insertion in a multi-way search tree

* Again, simple adaptation of BSTs
- But: we don't always need to create a new node
- We caninsert in an existing one if there is space

* Start with a search for the value [ we want to insert
* If found, stop (no duplicates)

* |f not found, insert at the leaf we reached
- If Full, create an z-th child, such that k;—1 < I < k;

Insert value 28

Value 28 inserted

Insert value 32




Value 32 inserted

Insert value 12

Unsuccessful Search

Value 12 inserted

Deletion from a multi-way search tree

Left as an exercise.




Complexity of operations

» We need to traverse the tree from the root to a leaf

« The time spent at each node is constant
- Eg.findisuchthatk;_; <1 < k;

- Assuming m is Fixed!

* So as usual all complexities are O(h)

- O(n) inthe worst-case

Balanced multi-way search trees
 Similarly to BSTs we need to keep the tree balanced
- Sothat h = O(logn)
« AVL where a kind of balanced BSTs

* We will study two kinds of balanced multi-way search trees:
- 2-3 trees
- 2-3-4 trees (also known as 2-4 trees)

2-3 trees

* A2-3 treeis a 3-way search tree which has the following properties

* Size property
- Each node contains 1 or 2 values

- Internal nodes with n values have exactly n + 1 children

* Depth property
- All leaves have the same depth (lie on the same level)

Example of 2-3 tree




Height of 2-3 trees

* All nodes at all levels except the last one are internal
- And each internal node has at least 2 children

- So at level i we have at least 2¢ nodes
* Hencen > 2", in other words h = O(log n)

* So we can search for an element in time O(log n)

- Using the standard algorithm for m-way trees

Search for L

Insertion in 2-3-trees

* We can start by following the generic algorithm for m-way trees
* Search for the value [ we want to insert
« If found, stop (no duplicates)

* |f not found, insert at the leaf we reached

Example: insert B




Example: insert B

Example: result

Insertion in 2-3-trees

* But whatif there is no space at the leaf (overflow)?

 The standard algorithm will insert a child at the leaf

- But this violates the depth property!
- The new leaf is not at the same level

« Different strategy

- split the overflowed node into two nodes
- pass the middle value to the parent (separator of the two nodes)

* The middle value might overflow the parent

- Same procedure: split and send the middle value up

Example: insert M




Example: insert M

M overflows this node.

Example: insert M
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The node is split in
two and Lis passed
to the parent node

Example: insert M

Example: insert M




Example: result

Lis inserted in the root node

Example: insert Q

Example: insert Q
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This node is split up
and P is passed up

Example: result

ey @
CDGEOWO@OOE




Example: insert R
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Risinserted in the node with Q where there is space.

Insertion in 2-3-trees

* The root might also overflow

« Same procedure
- Splitit
- The middle value moves up, creating a new root
* Thisis the only operation that increases the tree's height

- Itincreases the depth of all nodes simultaneously

- 2-3-trees grow at the root, not at the leaves!

Example: insert S Example: insert S
D () G an N R TR
Soverflows This node is split
this node and Ris sent up
S overflows this node
m




Example: insert S

Example: insert S

Example: insert S

Example: result




Complexity of insertion

« We traverse the tree

- From the root to a leaf when searching

- From the leaf back to the root while splitting
 Each split takes constant time

- Wedoatmost h + 1 of them

* Sointotal O(h) = O(logn) steps

- Recall, the treeis balanced

2-4 trees

* A2-4 tree (or 2-3-4 tree) is a 4-way search tree with 2 extra properties

+ Size property

- Each node contains between 1 and 3 values

- Internal nodes with n values have exactlyn + 1 children

* Depth property

- All leaves have the same depth (lie on the same level)

* Such trees are balanced
- h=0(logn)

- Proof: exercise

Insertion in 2-4 trees

« Same as for 2-3-trees
- Search for the value

- Insert at a leaf

* In case of an overflow (5-node)
- Splititinto a 3-node and a 2-node

- Move the separator value k3 to the parent

Overflow at a 5-node
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The separating value is sent to the parent node

Node replaced with a 3-node and a 2-node
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Example: insert 4
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Example: insert 6




Example: insert 12

Example: insert 15 - overflow

Creation of new root node Split
G ®




Example: insert 3

Example: insert 5 - overflow
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Example: insert 10

Example: insert 8
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Example Example: insert 17 - overflow
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Inserted 11, 13 and 14.

oD @ o T




Split and send 15 to the parent node

The root overflows
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Creation of new root

L

-

Split




Final tree

Complexity

» Same as for 2-3-trees
- At most A splits

- Each splitis constant time

* O(logn)

- Because the treeis balanced

Removal in 2-4 trees

* Toremove avalue k; from an internal node

- Replace with its predecessor (or its successor)
- Right-most value in the 2-th subtree

- Similar to the BST case of nodes with two children

* Toremove avalue from a leaF

- We simply remove it

- Butit might viotalate the size property (underflow)

Fixing underflows

Two strategies for fixing an underlow at v
* Isthere an immediate sibling w with a “spare” value? (2 or 3 values)

* If so, we do a transfer operation
- Move avalue of w toits parent u
- Move avalue of the parent v to v
* If not, we do a Fusion operation

- Merge v and w, creating a new node v/
- Move a value from the parent u to v/

- This might underflow the parent, continue the same procedure there




Initial tree Remove 4

Transfer After the transfer




Remove 12

Remove 12

Fusion of and

After the Fusion




Remove 13
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After the removal of 13

Remove 14 - underflow

Fusion




Underflow at Fusion
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Remove the root Final tree
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