Multi-Way Search Trees

Motivation

- We keep the ordering idea of BSTs
 - Fast search, by excluding whole subtrees
- And add more than two children for each node
 - Gives more flexibility in restructuring the tree
 - And new ways to keep it balanced

Multi-way search trees

- d-node: a node with d children
- Each internal d-node stores $d - 1$ ordered values $k_1 < \ldots < k_{d-1}$
 - No duplicate values in the whole tree
- All values in a subtree lie in-between the corresponding node values
 - For all values l in the i-th subtree: $k_{i-1} < l < k_i$
 - Convention: $k_0 = -\infty$, $k_d = +\infty$
- m-way search tree: all nodes have at most m children
 - A BST is a 2-way search tree

Example multi-way search tree

$m = 3$
Searching in a multi-way search tree

- Simple adaptation of the algorithm for BSTs
- Start from the root, traverse towards the leaves
- In each node, there is a single subtree that can possibly contain a value l
 - The subtree i such that $k_{i-1} < l < k_i$
 - Continue in that subtree

Example multi-way search tree

Search for value 12

Unsuccessful search

Search for value 24

Successful search
Insertion in a multi-way search tree

- Again, simple adaptation of BSTs
 - **But**: we don’t always need to create a new node
 - We can insert in an existing one if there is space
- Start with a search for the value \(i \) we want to insert
 - If found, stop (no duplicates)
 - If not found, insert at the leaf we reached
 - If full, create an \(i \)-th child, such that \(k_{i-1} < i < k_i \)

Insert value 28

Value 28 inserted

Insert value 32

Unsuccessful search

\(m = 3 \)
Value 32 inserted

Insert value 12

Value 12 inserted

Deletion from a multi-way search tree

Left as an exercise.
Complexity of operations
- We need to traverse the tree from the root to a leaf
- The time spent at each node is constant
 - Eg. find i such that $k_{i-1} < l < k_i$
 - Assuming m is fixed!
- So as usual all complexities are $O(h)$
- $O(n)$ in the worst-case

Balanced multi-way search trees
- Similarly to BSTs we need to keep the tree balanced
 - So that $h = O(\log n)$
- AVL where a kind of balanced BSTs
- We will study two kinds of balanced multi-way search trees:
 - 2-3 trees
 - 2-3-4 trees (also known as 2-4 trees)

2-3 trees
- A 2-3 tree is a 3-way search tree which has the following properties
 - **Size property**
 - Each node contains 1 or 2 values
 - Internal nodes with n values have exactly $n + 1$ children
 - **Depth property**
 - All leaves have the same depth (lie on the same level)

Example of 2-3 tree
Height of 2-3 trees

- **All nodes at all levels** except the last one are **internal**
 - And each internal node has at least 2 children
 - So at level i we have at least 2^i nodes
- Hence $n \geq 2^h$, in other words $h = O(\log n)$
- So we can search for an element in time $O(\log n)$
 - Using the standard algorithm for m-way trees

Search for L

Insertion in 2-3-trees

- We can start by following the generic algorithm for m-way trees
- Search for the value l we want to insert
- If found, stop (no duplicates)
- If not found, insert at the leaf we reached

Example: insert B
Insertion in 2-3-trees

- But what if there is no space at the leaf (overflow)?
- The standard algorithm will insert a child at the leaf
 - But this violates the depth property!
 - The new leaf is not at the same level
- Different strategy
 - split the overflowed node into two nodes
 - pass the middle value to the parent (separator of the two nodes)
- The middle value might overflow the parent
 - Same procedure: split and send the middle value up
Example: insert M

M overflows this node.

The node is split in two and L is passed to the parent node.

Example: insert M

The node is split in two and L is passed up to the parent.
Example: result

- L is inserted in the root node

Example: insert Q

- Q overflows this node

Example: insert Q

- This node is split up and P is passed up
Example: insert R

R is inserted in the node with Q where there is space.

Insertion in 2-3-trees

- The root might also **overflow**
- Same procedure
 - Split it
 - The middle value moves up, creating a **new root**
- This is the **only** operation that **increases** the tree’s **height**
 - It increases the depth of **all nodes** simultaneously
 - 2-3-trees grow at the root, not at the leaves!

Example: insert S

S overflows this node

Example: insert S

S overflows this node

This node is split and R is sent up
Example: insert S

Example: insert S

Example: insert S

Example: result
Complexity of insertion

- We traverse the tree
 - From the root to a leaf when searching
 - From the leaf back to the root while splitting
- Each split takes constant time
 - We do at most $h + 1$ of them
- So in total $O(h) = O(\log n)$ steps
 - Recall, the tree is balanced

2-4 trees

- A **2-4 tree** (or 2-3-4 tree) is a 4-way search tree with 2 extra properties

 Size property
 - Each node contains between 1 and 3 values
 - Internal nodes with n values have exactly $n + 1$ children

 Depth property
 - All leaves have the same depth (lie on the same level)
- Such trees are balanced
 - $h = O(\log n)$
 - Proof: exercise

Insertion in 2-4 trees

- Same as for 2-3-trees
 - Search for the value
 - Insert at a leaf
- In case of an overflow (5-node)
 - Split it into a 3-node and a 2-node
 - Move the separator value k_3 to the parent

Overflow at a 5-node

- A 5-node has the structure $v_1 v_2 v_3 v_4 v_5$ where $v = u_2$, and k_1, k_2, k_3, k_4 are values.
The separating value is sent to the parent node

Node replaced with a 3-node and a 2-node

Example: insert 4

Example: insert 6
Example: insert 12

Creation of new root node

Example: insert 15 - overflow

Split
Example: insert 3

Example: insert 5 - overflow

5 is sent to the parent node

Split
Example: insert 10

Example: insert 8

Example

Example: insert 17 - overflow

Inserted 11, 13 and 14.
Split and send 15 to the parent node

The root overflows

Creation of new root

Split
Final tree

```
3 4 6 8 11 13 14 17
12
5 10 15
```

Complexity

- Same as for 2-3-trees
 - At most \(h \) splits
 - Each split is constant time
- \(O(\log n) \)
 - Because the tree is balanced

Removal in 2-4 trees

- To remove a value \(k_i \) from an **internal** node
 - Replace with its **predecessor** (or its **successor**)
 - Right-most value in the \(i \)-th subtree
 - Similar to the BST case of nodes with two children
- To remove a value from a **leaf**
 - We simply remove it
 - But it might violate the **size** property (underflow)

Fixing underflows

Two strategies for fixing an underflow at \(\nu \)

- Is there an **immediate sibling** \(w \) with a “spare” value? (2 or 3 values)
- If so, we do a **transfer** operation
 - Move a value of \(w \) to its parent \(u \)
 - Move a value of the parent \(u \) to \(\nu \)
- If not, we do a **fusion** operation
 - Merge \(\nu \) and \(w \), creating a new node \(\nu' \)
 - Move a value from the parent \(u \) to \(\nu' \)
 - This might **underflow the parent**, continue the same procedure there
Initial tree

Remove 4

Transfer

After the transfer
Remove 12

Fusion of and

After the fusion
After the removal of 13

Remove 14 - underflow

Fusion
Underflow at

Fusion

Remove the root

Final tree
Readings

- T. A. Standish. *Data Structures, Algorithms and Software Principles in C*. Section 9.9
- R. Sedgewick. *Αλγόριθμοι σε C*. 3η Αμερικανική Έκδοση. Εκδόσεις Κλειδάριθμος. Section 13.3