Multi-Way Search Trees

Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού
Κώστας Χατζηκοκολάκης
Motivation

- We keep the **ordering** idea of BSTs
 - **Fast search**, by excluding whole subtrees

- And add **more than two children** for each node
 - Gives more flexibility in restructuring the tree
 - And news ways to **keep it balanced**
Multi-way search trees

- d-node: a node with d children

- Each **internal** d-node stores $d - 1$ **ordered** values $k_1 < \ldots < k_{d-1}$
 - **No duplicate** values in the whole tree

- All values in a **subtree** lie **in-between** the corresponding node values
 - For all values l in the i-th subtree: $k_{i-1} < l < k_i$
 - Convention: $k_0 = -\infty$, $k_d = +\infty$

- m-way search tree: all nodes have **at most** m children
 - A BST is a 2-way search tree
Example multi-way search tree

\[m = 3 \]
Searching in a multi-way search tree

• Simple adaptation of the algorithm for BSTs
• Start from the root, traverse towards the leaves

• In each node, there is a **single subtree** that can possibly contain a value \(l \)
 - The subtree \(i \) such that \(k_{i-1} < l < k_i \)
 - Continue in that subtree
Example multi-way search tree
Search for value 12

Unsuccessful search
Search for value 24

Successful search
Insertion in a multi-way search tree

- Again, simple adaptation of BSTs
 - **But**: we don't always need to create a new node
 - We can insert in an existing one if there is space

- Start with a search for the value \(l \) we want to insert

- If found, stop (no duplicates)

- If not found, insert at the leaf we reached
 - If full, create an \(i \)-th child, such that \(k_{i-1} < l < k_i \)
Insert value 28

$\mathbf{m} = 3$

Unsuccessful search
Value 28 inserted
Insert value 32

Unsuccessful search
Value 32 inserted
Insert value 12

Unsuccessful Search
Value 12 inserted
Deletion from a multi-way search tree

Left as an exercise.
Complexity of operations

- We need to traverse the tree from the root to a leaf
- The time spent at each node is constant
 - Eg. find i such that $k_{i-1} < l < k_i$
 - Assuming m is fixed!
- So as usual all complexities are $O(h)$
 - $O(n)$ in the worst-case
Balanced multi-way search trees

- Similarly to BSTs we need to keep the tree balanced
 - So that $h = O(\log n)$

- AVL where a kind of balanced BSTs

- We will study two kinds of balanced multi-way search trees:
 - 2-3 trees
 - 2-3-4 trees (also known as 2-4 trees)
2-3 trees

• A 2-3 tree is a 3-way search tree which has the following properties

• Size property
 - Each node contains 1 or 2 values
 (so each internal node contains 2 or 3 children)

• Depth property
 - All leaves have the same depth (lie on the same level)
Example of 2-3 tree
Height of 2-3 trees

• **All nodes** at **all levels** except the last one are **internal**
 - And each internal node has at least 2 children
 - So at level i we have at least 2^i nodes

• Hence $n \geq 2^h$, in other words $h = O(\log n)$

• So we can search for an element in time $O(\log n)$
 - Using the standard algorithm for m-way trees
Search for L
Insertion in 2-3-trees

- We can start by following the generic algorithm for m-way trees
- Search for the value l we want to insert
- If found, stop (no duplicates)
- If not found, insert at the **leaf** we reached
Example: insert B
Example: insert B
Example: result
Insertion in 2-3-trees

- But what if there is **no space at the leaf** (overflow)?

- The standard algorithm will insert a child at the leaf
 - But this **violates the depth property**!
 - The new leaf is not at the same level

- Different strategy
 - **split** the overflowed node into two nodes
 - pass the **middle value** to the parent (**separator** of the two nodes)

- The middle value might **overflow the parent**
 - Same procedure: split and send the middle value up
Example: insert M
Example: insert M

M overflows this node.
Example: insert M

The node is split in two and L is passed to the parent node.
Example: insert M

Loverflows this node

A B
D
E F
I
K
M
O P

H

J N

L
Example: insert M

The node is split in two and Lis passed up to the parent
Example: result

Lis inserted in the root node
Example: insert Q

Q overflows this node
Example: insert Q

This node is split up and P is passed up
Example: result
Example: insert R

R is inserted in the node with Q where there is space.
Insertion in 2-3-trees

• The root might also **overflow**

• Same procedure
 - Split it
 - The middle value moves up, creating a **new root**

• This is the **only** operation that **increases** the tree's **height**
 - It increases the depth of **all nodes** simultaneously
 - 2-3-trees grow at the root, not at the leaves!
Example: insert S

S overflows this node
Example: insert S

This node is split and R is sent up.
Example: insert S

Roverflows this node

A B
D
E F
H
I
J
K
L
M
N P
O
Q
S
R
Example: insert S

This node is split up and P is sent up
Example: insert S

P overflows the root

A B E F I K M O Q S

D J N R
Example: result

The root splits and L becomes the new root
Complexity of insertion

- We traverse the tree
 - From the root to a leaf when searching
 - From the leaf back to the root while splitting
- Each split takes constant time
 - We do at most $h + 1$ of them
- So in total $O(h) = O(\log n)$ steps
 - Recall, the tree is balanced
2-4 trees

- A 2-4 tree (or 2-3-4 tree) is a 4-way search tree with 2 extra properties

- **Size property**
 - Each node contains between 1 and 3 values (so each internal node contains between 2 and 4 children)

- **Depth property**
 - All leaves have the same depth (lie on the same level)

- Such trees are balanced
 - \(h = O(\log n) \)
 - Proof: exercise
Insertion in 2-4 trees

• Same as for 2-3-trees
 - Search for the value
 - Insert at a leaf

• In case of an overflow (5-node)
 - Split it into a 3-node and a 2-node
 - Move the separator value k_3 to the parent
Overflow at a 5-node
The separating value is sent to the parent node
Node replaced with a 3-node and a 2-node

\[h_1 \quad k_3 \quad h_2 \quad u \]

\[u_1 \quad v' = u_2 \quad v'' = u_3 \quad u_4 \]

\[k_1 \quad k_2 \quad k_4 \]

\[v_1 \quad v_2 \quad v_3 \quad v_4 \quad v_5 \]
Example: insert 4
Example: insert 6
Example: insert 12
Example: insert 15 - overflow
Creation of new root node
Example: insert 3
Example: insert 5 - overflow
5 is sent to the parent node
Split

5 12

3 4
6
15
Example: insert 10
Example: insert 8
Example

Inserted 11, 13 and 14.
Example: insert 17 - overflow
Split and send 15 to the parent node

Diagram:

- Top node: 5 10 12
- Left child: 3 4
- Middle child: 6 8
- Right child: 11
- Rightmost child: 13 14 17
- Edge to parent node: 15
The root overflows
Creation of new root
Split

Diagram of data split with nodes labeled 3, 4, 6, 8, 11, 13, 14, 15, and 17.
Final tree
Complexity

- Same as for 2-3-trees
 - At most h splits
 - Each split is constant time

- $O(\log n)$
 - Because the tree is balanced
Removal in 2-4 trees

- To remove a value k_i from an internal node
 - Replace with its predecessor (or its successor)
 - Right-most value in the i-th subtree
 - Similar to the BST case of nodes with two children

- To remove a value from a leaf
 - We simply remove it
 - But it might violate the size property (underflow)
Fixing underflows

Two strategies for fixing an underlow at ν

• Is there an immediate sibling w with a “spare” value? (2 or 3 values)

• If so, we do a transfer operation
 - Move a value of w to its parent u
 - Move a value of the parent u to ν

• If not, we do a fusion operation
 - Merge ν and w, creating a new node ν'
 - Move a value from the parent u to ν'
 - This might underflow the parent, continue the same procedure there
Initial tree
Remove 4
After the transfer
Remove 12
Remove 12
Fusion of and
After the fusion
Remove 13
After the removal of 13
Remove 14 - underflow
Fusion
Underflow at
Fusion

Diagram:
- Node 6
 - Child 5
 - Child 8 10
- Node 11
- Node u
- Child 15 17
Remove the root
Final tree
Readings

- T. A. Standish. *Data Structures, Algorithms and Software Principles in C*. Section 9.9
- R. Sedgewick. *Αλγόριθμοι σε C*. 3η Αμερικανική Έκδοση. Εκδόσεις Κλειδάριθμος. Section 13.3