Weighted graphs

Graphs with numbers, called *weights*, attached to each edge.

- Often restricted to non-negative.
- Directed or undirected.
- Examples:
 - Distance between cities
 - Cost of flight between airports
 - Time to send a message between routers

Adjacency matrix representation

\[
T[i,j] = \begin{cases}
 w_{i,j} & \text{if } i, j \text{ are connected} \\
 \infty & \text{if } i \neq j \text{ are not connected} \\
 0 & \text{if } i = j
\end{cases}
\]

- Similarly for adjacency lists

Example weighted graph

![Example weighted graph diagram]
Example weighted graph

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>∞</td>
<td>0</td>
<td>7</td>
<td>∞</td>
<td>∞</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>∞</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>6</td>
<td>∞</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>∞</td>
<td>∞</td>
<td>8</td>
<td>2</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>

Adjacency matrix

Shortest paths

- The **length** of a path is the **sum of the weights** of its edges
- Very common problem
 - find the **shortest path** from s to d
- Examples
 - Shortest route between cities
 - Cheapest connecting flight
 - Fastest network route
 - …

Shortest path problem

Two main variants:

- **Single source** s
 - Find the shortest path from s to each node
 - Dijkstra’s algorithm
 - Only for **non-negative** weights (important!)
- **All-pairs**
 - Find the shortest path between all pairs s, d
 - Floyd-Warshall algorithm
 - Any weights
Dijkstra's algorithm

Main ideas:

- Keep a set of visited nodes
 - Start with $W = \{s\}$ (or $W = \{\}$)
- Keep a matrix $\Delta[u]$
 - Minimum distance from s to u passing only through W
 - Start with $\Delta[u] = T[s, u]$ (or $\Delta[s] = 0, \Delta[u] = \infty$)
- At each step we enlarge W by adding a new vertex $w \notin W$
 - w is the one with minimum $\Delta[w]$

Dijkstra's algorithm

Main ideas:

- Adding w to W might affect $\Delta[u]$
 - For some neighbour u of w
- We might now have a shorter path to u passing through w
 - Of the form $s \to \ldots \to w \to u$
 - If $\Delta[u] > \Delta[w] + T[w, u]$
 - In this case we update Δ
 - $\Delta[u] = \Delta[w] + T[w, u]$

Example graph

Expanding the vertex set w in stages
Expanding the vertex set \(w \) in stages

\(W = 2 \) is chosen for the second stage.

<table>
<thead>
<tr>
<th>Stage</th>
<th>(W)</th>
<th>V-W</th>
<th>(w)</th>
<th>(\Delta(w))</th>
<th>(\Delta(1))</th>
<th>(\Delta(2))</th>
<th>(\Delta(3))</th>
<th>(\Delta(4))</th>
<th>(\Delta(5))</th>
<th>(\Delta(6))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>{1}</td>
<td>{2,3,4,5,6}</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>{1,2}</td>
<td>{3,4,5,6}</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>5</td>
</tr>
</tbody>
</table>

\(W = 6 \) is chosen for the third stage.

<table>
<thead>
<tr>
<th>Stage</th>
<th>(W)</th>
<th>V-W</th>
<th>(w)</th>
<th>(\Delta(w))</th>
<th>(\Delta(1))</th>
<th>(\Delta(2))</th>
<th>(\Delta(3))</th>
<th>(\Delta(4))</th>
<th>(\Delta(5))</th>
<th>(\Delta(6))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>{1}</td>
<td>{2,3,4,5,6}</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>{1,2}</td>
<td>{3,4,5,6}</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>{1,2,6}</td>
<td>{3,4,5}</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>(\infty)</td>
<td>5</td>
</tr>
</tbody>
</table>
Expanding the vertex set w in stages

$W=4$ is chosen for the fourth stage.

<table>
<thead>
<tr>
<th>Stage</th>
<th>W</th>
<th>$V-W$</th>
<th>w</th>
<th>$\Delta(w)$</th>
<th>$\Delta(1)$</th>
<th>$\Delta(2)$</th>
<th>$\Delta(3)$</th>
<th>$\Delta(4)$</th>
<th>$\Delta(5)$</th>
<th>$\Delta(6)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>{1}</td>
<td>${2,3,4,5,6}$</td>
<td>-</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>{1,2}</td>
<td>${3,4,5,6}$</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>{1,2,6}</td>
<td>${3,4,5}$</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>{1,2,6,4}</td>
<td>${3,5}$</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>13</td>
<td>5</td>
</tr>
</tbody>
</table>

Expanding the vertex set w in stages

$W=3$ is chosen for the fifth stage.

<table>
<thead>
<tr>
<th>Stage</th>
<th>W</th>
<th>$V-W$</th>
<th>w</th>
<th>$\Delta(w)$</th>
<th>$\Delta(1)$</th>
<th>$\Delta(2)$</th>
<th>$\Delta(3)$</th>
<th>$\Delta(4)$</th>
<th>$\Delta(5)$</th>
<th>$\Delta(6)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>{1}</td>
<td>${2,3,4,5,6}$</td>
<td>-</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>{1,2}</td>
<td>${3,4,5,6}$</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>{1,2,6}</td>
<td>${3,4,5}$</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>{1,2,6,4}</td>
<td>${3,5}$</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>{1,2,6,4,3}</td>
<td>${5}$</td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>13</td>
<td>5</td>
</tr>
</tbody>
</table>
Dijkstra's algorithm in pseudocode

// Δεδομένα
src : αρχικός κόμβος
dest : ... vertex u in Graph
 dist[u] = INT_MAX // infinity
 prev[u] = NULL
 W[u] = 0
dist[src] = 0

// Αρχικοποίηση: W={} (εναλλακτικά μπορούμε και W={src})

// Κυρίως αλγόριθμος
while true
 w = ... < dist[u] // καλύτερο από πριν, update
 dist[u] = alt
 prev[u] = w

// Expanding the vertex set w in stages
W=5 is chosen for the sixth stage.

Stage | W | V-W | w | Δ(w) | Δ(1) | Δ(2) | Δ(3) | Δ(4) | Δ(5) | Δ(6)
Start (1) | {2,3,4,5,6} | - | 3 | 6 | ∞ | ∞ | ∞ | 5
2 (1,2) | {3,4,5,6} | 2 | 0 | 0 | 3 | 10 | ∞ | ∞ | 5
3 (1,2,6) | {3,5} | 6 | 5 | 0 | 3 | 10 | 7 | ∞ | 5
4 (1,2,6,4) | {5} | 4 | 7 | 0 | 3 | 10 | 7 | 13 | 5
5 (1,2,6,4,3) | {} | 3 | 10 | 0 | 3 | 10 | 7 | 11 | 5
6 (1,2,6,4,3,5) | {} | 5 | 11 | 0 | 3 | 10 | 7 | 11 | 5

// Expanding the vertex set w in stages

Stage | W | V-W | w | Δ(w) | Δ(1) | Δ(2) | Δ(3) | Δ(4) | Δ(5) | Δ(6)
Start (1) | {2,3,4,5,6} | - | 3 | 6 | ∞ | ∞ | ∞ | 5
2 (1,2) | {3,4,5,6} | 2 | 0 | 0 | 3 | 10 | ∞ | ∞ | 5
3 (1,2,6) | {3,5} | 6 | 5 | 0 | 3 | 10 | 7 | ∞ | 5
4 (1,2,6,4) | {5} | 4 | 7 | 0 | 3 | 10 | 7 | 13 | 5
5 (1,2,6,4,3) | {} | 3 | 10 | 0 | 3 | 10 | 7 | 11 | 5
6 (1,2,6,4,3,5) | {} | 5 | 11 | 0 | 3 | 10 | 7 | 11 | 5

// Expanding the vertex set w in stages

Dijkstra's algorithm in pseudocode

// Κυρίως αλγόριθμος
while true
 w = vertex with minimum dist[w], among those with W[w] ≠ 0
 W[w] = 1
 if w == dest
 stop
 // optimal cost = dist[dest]
 // optimal path = dest <- prev[dest] <- ... <- src (inverse)
 for each neighbor u of w
 if W[u] == 1
 continue
 alt = dist[w] + weight(w,u) // κόστος του src -> ... -> w
 if alt < dist[u]
 dist[u] = alt
 prev[u] = w

Dijkstra's algorithm in pseudocode

// Ρευσματισμός
W = {src}
Using a priority queue

- Finding the $w \not\in W$ with minimum $\Delta[w]$ is slow
 - $\mathcal{O}(n)$ time

- But we can use a priority queue for this!
 - We only keep vertices $w \not\in W$ in the queue
 - They are compared based on their $\Delta[w]$
 (each w has “priority” $\Delta[w]$)

- Careful when $\Delta[w]$ is modified!
 - Either use a priority queue that allows updates
 - Or insert multiple copies of each w with different priorities
 - the queue might contain already visited vertices: ignore them

Dijkstra's algorithm with priority queue

```plaintext
// Κύριος αλγόριθμος
while pq is not empty
  w = pq.HeapMax(pq) // w with minimal dist[u]
  pq.HeapRemoveMax(pq)
  if exists(W[w]) // το w μπορεί να υπάρχει πολλές φορές στην οθόνη, τον θα είναι ήδη vis
    continue // δεν κάνουμε replace), και να είναι ήδη vis
  if w == dest
    stop // optimal cost/path same as before
  for each neighbor u of w
    if exists(W[u])
      continue
    alt = dist[w] + weight(w,u) // cost of src->...->w->u
    if !exists(dist[u]) OR alt < dist[u]
      dist[u] = alt
      prev[u] = w
      pq.HeapInsert(pq, {u,alt}) // προαιρετικά: replace αν υπάρχει μονοπάτι
  stop // pq άδειασε πριν βρούμε το dest => δεν υπάρχει μονοπάτι
```

Notation

- $s \rightarrow d$
 - Direct step step from s to d

- $s \xrightarrow{W} d$
 - Multiple steps $s \rightarrow \ldots \rightarrow d$
 - All intermediate steps belong to the set $W \subseteq V$

- So $s \xrightarrow{W} d$ is the overall shortest one
Proof of correctness

We need to prove that $\Delta[u]$ is the minimum distance to u after the algorithm finishes.

But it’s much easier to reason step by step:
- we need a property that holds at every step.
- this is called an invariant (property that never changes).

Base case $W = \{s\}$:
- Trivial, the only path $s \rightarrow u$ is the direct one $s \rightarrow u$.
- For (1): its cost is exactly $T[s, u] = \Delta[u]$.
- initial value of $\Delta[u]$.
- For (2): the only $u \in W$ is s itself.

Inductive case:
- Assume $|W| = k$ and (1), (2) hold.
- The algorithm:
 - Updates W, adding a new vertex $u \notin W$.
 - Updates $\Delta[u]$ for all neighbours u of w.
- Let W', Δ' be the values after the update.
- Show that (1), (2) still hold for W', Δ'.

Invariant of Dijkstra’s algorithm:
- $\Delta[u]$ is the cost of the shortest path passing only through W.
- And the shortest overall when $u \in W$.

Formally:
1. For all $u \in V$ the path $s \rightarrow u$ has cost $\Delta[u]$.
2. For all $u \in W$ the path $s \rightarrow u$ has cost $\Delta[u]$.

Proof: induction on the size of W, for both (1), (2) together.

Proof of correctness

We start showing that (2) still holds for W', Δ'

- The interesting vertex is the w we just added
 - Vertices $u \neq w$ are trivial from the induction hypothesis

- Show: $s \xrightarrow{V} w$ has cost $\Delta'[w]$
 - Note: $\Delta'[w] = \Delta[w]$ (we do not update $\Delta[w]$)
 - We already know that $s \xrightarrow{W} w$ has cost $\Delta[w]$ (ind. hyp)
 - So we just need to prove that there is no better path outside W

Proof of correctness

Assuming such path exists, let r be its first vertex outside W

- So the path $s \xrightarrow{W} r \xrightarrow{V} w$ has cost $c < \Delta[w]$
- So the path $s \xrightarrow{W} r$ has cost at most $c < \Delta[w]$ (no negative weights!)
- So $\Delta[r] < \Delta[w]$

- Impossible! We chose w to be the one with min $\Delta[w]$

Proof of correctness

It remains to show (1) for W', Δ'

- Take some arbitrary u
 - Let c be the cost of $s \xrightarrow{W} u$
 - Show: $c = \Delta'[u]$

- Three cases for the optimal path $s \xrightarrow{W} u$

 Case 1: the path does not pass through w
 - So it is of the form $s \xrightarrow{W} u$
 - This path has cost $\Delta[u]$ (induction hypothesis)
 - No update: $\Delta'[u] = \Delta[u] = c$

 Case 2: w is right before u
 - So the path is of the form $s \xrightarrow{W} w \rightarrow u$
 - The cost of $s \xrightarrow{W} w$ is $\Delta[w]$ (induction hypothesis)
 - So $c = \Delta[w] + T[w, u]$
 - So the algorithm will set $\Delta'[u] = \Delta[w] + T[w, u]$
 when updating the neighbours of w
 - So $c = \Delta'[u]$

 Case 3: w is left before u
 - So the path is of the form $s \xrightarrow{W} w \leftarrow u$
 - The cost of $s \xrightarrow{W} w$ is $\Delta[w]$ (induction hypothesis)
 - So $c = \Delta[w] + T[u, w]$
 - No update: $\Delta'[u] = \Delta[u] = c$
Proof of correctness

- Case 3: some other x appears after w in the path
 - So the path is of the form $s \xrightarrow{W} w \rightarrow x \xrightarrow{W} u$
 - But the path $s \xrightarrow{W} w \rightarrow x$ is no shorter than $s \xrightarrow{W} x$
 - From the induction hypothesis for $x \in W$
 - So $s \xrightarrow{W} x \rightarrow u$ is also optimal, reducing to case 1!

Complexity

Without a priority queue:

- Initialization stage: loop over vertices: $O(n)$
- The while-loop adds one vertex every time: n iterations
- Finding the new vertex loops over vertices: $O(n)$
 - same for updating the neighbours
- So total $O(n^2)$ time

The all-pairs shortest path problem

- Find the shortest path between all pairs s, d
- **Floyd-Warshall** algorithm
- Any weights
 - Even negative
 - But no **negative loops** (why?)
The all-pairs shortest path problem

Main idea

- At each step we compute the shortest path through a subset of vertices
 - Similarly to W in Dijkstra
 - But now the set at step k is $W_k = \{1, \ldots, k\}$
 - Vertices are numbered in any order
- Step k: the cost of $i \xrightarrow{W_k} j$ is $A_k[i,j]
- Similar to Δ in Dijkstra (but for all pairs i, j of nodes)

Floyd-Warshall algorithm

- The algorithm at each step computes A_k from A_{k-1}
- Initial step $k = 0$
 - Start with $A_0[i,j] = T[i,j]$
 - Only direct paths are allowed

Floyd-Warshall algorithm in pseudocode

```pseudo
def floyd_warshall():
    for i in range(size - 1):
        for j in range(size - 1):
            for k in range(size - 1):
```

A is the current A_k at every step k.
Complexity

- Three simple loops of n steps
- So $O(n^3)$
- Not better than n executions of Dijkstra in complexity
 - But much simpler
 - Often faster in practice
 - And works for negative weights

Readings

- T. A. Standish. *Data Structures, Algorithms and Software Principles in C*. Chapter 10