Weighted graphs

Graphs with numbers, called *weights*, attached to each edge. Often restricted to non-negative.

Directed or undirected.

Examples:
- *Distance* between cities
- *Cost* of flight between airports
- *Time* to send a message between routers

Example weighted graph

- Adjacency matrix representation

\[
T[i, j] = \begin{cases}
 w_{i,j} & \text{if } i, j \text{ are connected} \\
 \infty & \text{if } i \neq j \text{ are not connected} \\
 0 & \text{if } i = j
\end{cases}
\]

Similarly for adjacency lists.
Example weighted graph

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>∞</td>
<td>0</td>
<td>7</td>
<td>∞</td>
<td>∞</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>∞</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>6</td>
<td>∞</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>∞</td>
<td>∞</td>
<td>8</td>
<td>2</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>

Adjacency matrix

Shortest paths

- The length of a path is the sum of the weights of its edges
- Very common problem
 - find the shortest path from s to d
- Examples
 - Shortest route between cities
 - Cheapest connecting flight
 - Fastest network route
 - …

Shortest path from vertex 1 to vertex 5

Shortest path problem

Two main variants:

- **Single source s**
 - Find the shortest path from s to each node
 - **Dijkstra's algorithm**
 - Only for non-negative weights (important!)
- **All-pairs**
 - Find the shortest path between all pairs s, d
 - **Floyd-Warshall algorithm**
 - Any weights
Dijkstra's algorithm

Main ideas:
- Keep a set \(W \) of visited nodes
 - Start with \(W = \{s\} \) (or \(W = \{\} \))
- Keep a matrix \(\Delta[u] \)
 - Minimum distance from \(s \) to \(u \) passing only through \(W \)
 - Start with \(\Delta[u] = T[s, u] \) (or \(\Delta[s] = 0, \Delta[u] = \infty \))
- At each step we enlarge \(W \) by adding a new vertex \(w \notin W \)
 - \(w \) is the one with minimum \(\Delta[w] \)

Example graph

Expanding the vertex set \(w \) in stages

<table>
<thead>
<tr>
<th>Stage</th>
<th>(W)</th>
<th>(V-W)</th>
<th>(w)</th>
<th>(\Delta(w))</th>
<th>(\Delta(1))</th>
<th>(\Delta(2))</th>
<th>(\Delta(3))</th>
<th>(\Delta(4))</th>
<th>(\Delta(5))</th>
<th>(\Delta(6))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>({1})</td>
<td>({2,3,4,5,6})</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Expanding the vertex set \(w \) in stages

\(W = 2 \) is chosen for the second stage.

\[
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
\text{Stage} & W & V-W & w & \Delta(w) & \Delta(1) & \Delta(2) & \Delta(3) & \Delta(4) & \Delta(5) & \Delta(6) \\
\hline
\text{Start} & \{1\} & \{2,3,4,5,6\} & - & - & 0 & 3 & \infty & \infty & \infty & 5 \\
\hline
\end{array}
\]

Expanding the vertex set \(w \) in stages

\(W = 6 \) is chosen for the third stage.

\[
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
\text{Stage} & W & V-W & w & \Delta(w) & \Delta(1) & \Delta(2) & \Delta(3) & \Delta(4) & \Delta(5) & \Delta(6) \\
\hline
\text{Start} & \{1\} & \{2,3,4,5,6\} & - & - & 0 & 3 & \infty & \infty & \infty & 5 \\
\hline
2 & \{1,2\} & \{3,4,5,6\} & 2 & 3 & 0 & 3 & 10 & \infty & \infty & 5 \\
\hline
\end{array}
\]
Expanding the vertex set \(w \) in stages

\(W=4 \) is chosen for the fourth stage.

<table>
<thead>
<tr>
<th>Stage</th>
<th>(W)</th>
<th>(V-W)</th>
<th>(w)</th>
<th>(\Delta(w))</th>
<th>(\Delta(1))</th>
<th>(\Delta(2))</th>
<th>(\Delta(3))</th>
<th>(\Delta(4))</th>
<th>(\Delta(5))</th>
<th>(\Delta(6))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>(1)</td>
<td>(2,3,4,5,6)</td>
<td>-</td>
<td>(-)</td>
<td>0</td>
<td>3</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>(1,2)</td>
<td>(3,4,5,6)</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>(1,2,6)</td>
<td>(3,4,5)</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>(\infty)</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>(1,2,6,4)</td>
<td>(3,5)</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>13</td>
<td>5</td>
</tr>
</tbody>
</table>

\(W=3 \) is chosen for the fifth stage.

<table>
<thead>
<tr>
<th>Stage</th>
<th>(W)</th>
<th>(V-W)</th>
<th>(w)</th>
<th>(\Delta(w))</th>
<th>(\Delta(1))</th>
<th>(\Delta(2))</th>
<th>(\Delta(3))</th>
<th>(\Delta(4))</th>
<th>(\Delta(5))</th>
<th>(\Delta(6))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>(1)</td>
<td>(2,3,4,5,6)</td>
<td>-</td>
<td>(-)</td>
<td>0</td>
<td>3</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>(1,2)</td>
<td>(3,4,5,6)</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>(1,2,6)</td>
<td>(3,4,5)</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>(\infty)</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>(1,2,6,4)</td>
<td>(3,5)</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>(1,2,6,4,3)</td>
<td>(5)</td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>13</td>
<td>5</td>
</tr>
</tbody>
</table>
Expanding the vertex set \(w \) in stages

\(W = 5 \) is chosen for the sixth stage.

<table>
<thead>
<tr>
<th>Stage</th>
<th>(W)</th>
<th>(V-W)</th>
<th>(w)</th>
<th>(\Delta(w))</th>
<th>(\Delta(1))</th>
<th>(\Delta(2))</th>
<th>(\Delta(3))</th>
<th>(\Delta(4))</th>
<th>(\Delta(5))</th>
<th>(\Delta(6))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>({1})</td>
<td>({2,3,4,5,6})</td>
<td>- -</td>
<td>0</td>
<td>3</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>({1,2})</td>
<td>({3,4,5,6})</td>
<td>2 3</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>({1,2,6})</td>
<td>({3,4})</td>
<td>6 5</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>(\infty)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>({1,2,6,4})</td>
<td>({5})</td>
<td>4 7</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>13</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>({1,2,6,4,3})</td>
<td>({5})</td>
<td>3 10</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>11</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Dijkstra's algorithm in pseudocode

```plaintext
// Δεδομένα
src  : αρχικός κόμβος
dest : ... vertex u in Graph   
  dist[u] = INT_MAX    // infinity 
  prev[u] = NULL 
  W[u] = 0 
 
dist[src] = 0

// Κύριος αλγόριθμος
while true
  W[w] = 1  
  if w == dest
    stop
    // optimal cost = dist[dest]  
    // optimal path = dest <- prev[dest] <- ... <- src (inverse)
    for each neighbor u of w
      if W[u] == 1
        continue
      alt = dist[w] + weight(w,u)  // κόστος του src -> ... -> w
      if alt < dist[u]
        dist[u] = alt
        prev[u] = w
```

Dijkstra's algorithm in pseudocode

```
// Πληροφορίες που κρατάμε για κάθε κόμβο v
W[u] : αν ο u είναι στο σύνολο W, θα διαφορετικά
dist[u] : o πίνακας Δ
prev[u] : o προηγούμενος του ν στο βέλτιστο μονοπάτι

// Αρχικοποίηση: W={} (εναλλακτικά μπορούμε και W={src})
for each vertex u in Graph
  dist[u] = INT_MAX    // infinity
  prev[u] = NULL
  W[u] = 0

dist[src] = 0
```

Expanding the vertex set \(w \) in stages

Stage | \(W \) | \(V-W \) | \(w \) | \(\Delta(w) \) | \(\Delta(1) \) | \(\Delta(2) \) | \(\Delta(3) \) | \(\Delta(4) \) | \(\Delta(5) \) | \(\Delta(6) \) |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>({1})</td>
<td>({2,3,4,5,6})</td>
<td>- -</td>
<td>0</td>
<td>3</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>({1,2})</td>
<td>({3,4,5,6})</td>
<td>2 3</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>({1,2,6})</td>
<td>({3,4})</td>
<td>6 5</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>(\infty)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>({1,2,6,4})</td>
<td>({5})</td>
<td>4 7</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>13</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>({1,2,6,4,3})</td>
<td>({5})</td>
<td>3 10</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>11</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>({1,2,6,4,3,5})</td>
<td>({})</td>
<td>5 11</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>11</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Expanding the vertex set \(w \) in stages

Stage | \(W \) | \(V-W \) | \(w \) | \(\Delta(w) \) | \(\Delta(1) \) | \(\Delta(2) \) | \(\Delta(3) \) | \(\Delta(4) \) | \(\Delta(5) \) | \(\Delta(6) \) |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>({1})</td>
<td>({2,3,4,5,6})</td>
<td>- -</td>
<td>0</td>
<td>3</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>({1,2})</td>
<td>({3,4,5,6})</td>
<td>2 3</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>({1,2,6})</td>
<td>({3,4})</td>
<td>6 5</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>(\infty)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>({1,2,6,4})</td>
<td>({5})</td>
<td>4 7</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>13</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>({1,2,6,4,3})</td>
<td>({5})</td>
<td>3 10</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>11</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>({1,2,6,4,3,5})</td>
<td>({})</td>
<td>5 11</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>11</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Using a priority queue

• Finding the \(w \not\in W \) with \textbf{minimum} \(\Delta[w] \) is slow
 - \(O(n) \) time
• But we can use a \textbf{priority queue} for this!
 - We only keep vertices \(w \not\in W \) in the queue
 - They are compared based on their \(\Delta[w] \)
 (each \(w \) has “priority” \(\Delta[w] \))
• Careful when \(\Delta[w] \) is modified!
 - Either use a priority queue that allows \textbf{updates}
 - Or insert multiple copies of each \(w \) with different priorities
 - the queue might contain \textbf{already visited} vertices: ignore them

Dijkstra's algorithm with priority queue

// Δεδομένα
src : αρχικός κόμβος
dest : τελικός κόμβος

// Πληροφορίες που κρατάμε για κάθε κόμβο \(u \)
\(W[u] \): \(\{ \) αν \(\ o \) \ είναι στο σύνολο \(W \) \(\} \) διαφορετικά
dist[\(u \)] : \(\) ο πίνακας \(\Delta \)
prev[\(u \)] : \(\) ο προηγούμενος του \(u \) στο βέληστο μονοπάτι
pq : Priority queue, εισάγουμε tuples \(\{u, \text{dist}[u]\} \)

// Αρχικοποίηση: \(W={} \) (εναλλακτικά μπορούμε και \(W=\{\text{src}\} \))
prev[\(\text{src} \)] = NULL
\text{dist}[\text{src}] = 0
\text{pq} = \text{pq} _\text{insert}(\text{pq}, \{\text{src,0}\}) \quad // \text{dist}[\text{src}] = 0

// Κυρίως αλγόριθμος
while pq is not empty
 \(w = \text{pq} _\text{max}(pq) \) // \(w \) with minimal \(\text{dist}[u] \)
 \text{pq} = \text{pq} _\text{remove} _\text{max}(pq)
 \text{if exists}(W[w]) // το \(w \) μπορεί να υπάρχει πολλές φορές στην \(\alpha \)
 \text{continue} // δεν κάνουμε \text{replace}, και \(\alpha \) να \(\epsilon \) είναι \(\& \)δε \(\text{ Vis} \)
 \text{W[w]} = 1
 \text{if} \ w = \text{dest}
 \text{stop} // οπτικαλ \text{cost/path same as before}
 \text{for each neighbor} \ u \ of \ w
 \text{if exists}(W[u])
 \text{continue}
 alt = \text{dist}[w] + \text{weight}(w,u) // \text{cost of src->...->w->u}
 \text{if} \ !\text{exists} \(\text{dist}[u] \) \text{OR} \ alt < \text{dist}[u]
 \text{dist}[u] = alt
 prev[\(u \)] = \(w \)
 \text{pq} _\text{insert}(\text{pq}, \{u,alt\}) \quad // \text{προαιρετικά:} \text{ replace αν \ u}
 \text{stop} // \text{pq άδειασε πριν βρουμε dest} \Rightarrow \text{δεν υπάρχει μονοπάτι}

// Notation

• \(s \rightarrow d \)
 - Direct step step from \(s \) to \(d \)
• \(s \rightarrow W \rightarrow d \)
 - Multiple steps \(s \rightarrow \ldots \rightarrow d \)
 - All intermediate steps belong to the set \(W \subseteq V \)
• \(s \rightarrow W \rightarrow d \)
 - Shortest path among all \(s \rightarrow W \rightarrow d \)
 - So \(s \rightarrow W \rightarrow d \) is the overall shortest one
Proof of correctness

• We need to prove that $\Delta[u]$ is the minimum distance to u
 - after the algorithm finishes
• But it’s much easier to reason step by step
 - we need a property that holds at every step
 - this is called an invariant (property that never changes)

Invariant of Dijkstra’s algorithm

Formally:

Proof: induction on the size of W, for both (1), (2) together

Base case $W = \{s\}$

• Trivial, the only path $s \to u$ is the direct one $s \to u$
• For (1): its cost is exactly $T[s, u] = \Delta[u]$
 - initial value of $\Delta[u]$
• For (2): the only $u \in W$ is s itself

Inductive case

Assume $|W| = k$ and (1), (2) hold
• The algorithm
 - Updates W, adding a new vertex $w \not\in W$
 - Updates $\Delta[u]$ for all neighbours u of w
• Let $W’, \Delta’$ be the values after the update
• Show that (1),(2) still hold for $W’, \Delta’$
Proof of correctness

We start showing that (2) still holds for W', Δ'

- The interesting vertex is the w we just added
 - Vertices $u \neq w$ are trivial from the induction hypothesis

- Show: $s \xrightarrow{V} w$ has cost $\Delta'[w]$
 - Note: $\Delta'[w] = \Delta[w]$ (we do not update $\Delta[w]$)
 - We already know that $s \xrightarrow{W} w$ has cost $\Delta[w]$ (ind. hyp)
 - So we just need to prove that there is no better path outside W

It remains to show (1) for W', Δ'

- Take some arbitrary u
 - Let c be the cost of $s \xrightarrow{W} u$
 - Show: $c = \Delta'[u]$

- Three cases for the optimal path $s \xrightarrow{W'} u$
 - Case 1: the path does not pass through w
 - So it is of the form $s \xrightarrow{W} u$
 - This path has cost $\Delta[u]$ (induction hypothesis)
 - No update: $\Delta'[u] = \Delta[u] = c$
 - Case 2: w is right before u
 - So the path is of the form $s \xrightarrow{W} w \rightarrow u$
 - The cost of $s \xrightarrow{W} w$ is $\Delta[w]$ (induction hypothesis)
 - So $c = \Delta[w] + T[w, u]$
 - So the algorithm will set $\Delta'[u] = \Delta[w] + T[w, u]$
 when updating the neighbours of w
 - So $c = \Delta'[u]$

Proof of correctness

- Assuming such path exists, let r be its first vertex outside W
 - So the path $s \xrightarrow{W} r \xrightarrow{V} w$ has cost $c < \Delta[w]$
 - So the path $s \xrightarrow{W} r$ has cost at most $c < \Delta[w]$ (no negative weights!)
 - So $\Delta[r] < \Delta[w]$

 Impossible! We chose w to be the one with min $\Delta[w]$

Proof of correctness

- Case 2: w is right before u
 - So the path is $s \xrightarrow{W} w \rightarrow u$
 - The cost of $s \xrightarrow{W} w$ is $\Delta[w]$ (induction hypothesis)
 - So $c = \Delta[w] + T[w, u]$
 - So the algorithm will set $\Delta'[u] = \Delta[w] + T[w, u]$
 when updating the neighbours of w
 - So $c = \Delta'[u]$

Proof of correctness

- Case 1: the path does not pass through w
 - So it is of the form $s \xrightarrow{W} u$
 - This path has cost $\Delta[u]$ (induction hypothesis)
 - No update: $\Delta'[u] = \Delta[u] = c$
Proof of correctness

• Case 3: some other \(x \) appears after \(w \) in the path
 - So the path is of the form \(s \xrightarrow{w} w \rightarrow x \xrightarrow{w} u \)
 - But the path \(s \xrightarrow{w} w \rightarrow x \) is no shorter than \(s \xrightarrow{W} x \)
 - From the induction hypothesis for \(x \in W \)
 - So \(s \xrightarrow{W} x \rightarrow u \) is also optimal, reducing to case 1!

Complexity

Without a priority queue:

• Initialization stage: loop over vertices: \(O(n) \)

• The while-loop adds one vertex every time: \(n \) iterations

• Finding the new vertex loops over vertices: \(O(n) \)
 - same for updating the neighbours

• So total \(O(n^2) \) time

Complexity

With a priority queue:

• Initialization stage: loop over vertices, so \(O(n) \)

• Count the number of updates (steps in the inner loop)
 - Once for every neighbour of every node: \(e \) total
 - Each update is \(O(\log n) \) (at most \(n \) elements in the queue)

• Total \(O(e \log n) \)
 - Assuming a connected graph (\(e \geq n \))
 - And an implementation using adjacency lists

• Only good for sparse graphs!
 - But \(O(n \log n) \) can be hugely better than \(O(n^2) \)

The all-pairs shortest path problem

• Find the shortest path between all pairs \(s, d \)

• Floyd-Warshall algorithm

• Any weights
 - Even negative
 - But no negative loops (why?)
The all-pairs shortest path problem

Main idea

• At each step we compute the shortest path through a subset of vertices
 - Similarly to \(W \) in Dijkstra
 - But now the set at step \(k \) is \(W_k = \{1, \ldots, k\} \)
 - Vertices are numbered in any order
• Step \(k \): the cost of \(i \to j \) is \(A_{k-1}[i, j] + A_{k-1}[i, k] + A_{k-1}[k, j] \)

Floyd-Warshall algorithm

• The algorithm at each step computes \(A_k \) from \(A_{k-1} \)
• Initial step \(k = 0 \)
 - Start with \(A_0[i, j] = T[i, j] \)
 - Only direct paths are allowed

Floyd-Warshall algorithm in pseudocode

```c
void floyd_warshall() {
    for (int i = 0; i <= size-1; i++) {
        for (int j = 0; j <= size-1; j++)
            A[i][j] = weight(i, j);
    }
    for (int i = 0; i <= size-1; i++)
        A[i][i] = 0;
    for (int k = 0; k <= size-1; k++)
        // Compute A_k from A_{k-1}
        for (int i = 0; i <= size-1; i++)
            for (int j = 0; j <= size-1; j++)
}
```

A is the current \(A_k \) at every step \(k \).
Complexity

- Three simple loops of \(n \) steps
- So \(O(n^3) \)
- Not better than \(n \) executions of Dijkstra in complexity
 - But much simpler
 - Often faster in practice
 - And works for negative weights

Readings

- T. A. Standish. *Data Structures, Algorithms and Software Principles in C.* Chapter 10