Weighted graphs

- Graphs with numbers, called **weights**, attached to each edge
 - Often restricted to **non-negative**
- Directed or undirected
- Examples
 - **Distance** between cities
 - **Cost** of flight between airports
 - **Time** to send a message between routers

Weighted graphs

- Adjacency matrix representation
 \[
 T[i, j] = \begin{cases}
 w_{i,j} & \text{if } i, j \text{ are connected} \\
 \infty & \text{if } i \neq j \text{ are not connected} \\
 0 & \text{if } i = j
 \end{cases}
 \]
- Similarly for adjacency lists

Example weighted graph
Example weighted graph

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>∞</td>
<td>0</td>
<td>7</td>
<td>∞</td>
<td>∞</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>∞</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>6</td>
<td>∞</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>∞</td>
<td>∞</td>
<td>8</td>
<td>2</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>

Adjacency matrix

Shortest paths

- The length of a path is the sum of the weights of its edges
- Very common problem
 - Find the shortest path from s to d
- Examples
 - Shortest route between cities
 - Cheapest connecting flight
 - Fastest network route
 - …

Shortest path problem

Two main variants:

- **Single source** s
 - Find the shortest path from s to each node
 - **Dijkstra’s algorithm**
 - Only for **non-negative** weights (important!)
- **All-pairs**
 - Find the shortest path between all pairs s, d
 - **Floyd-Warshall algorithm**
 - Any weights
Dijkstra's algorithm

Main ideas:
- Keep a set \(W \) of visited nodes
 - Start with \(W = \{s\} \) (or \(W = \{\} \))
- Keep a matrix \(\Delta[u] \)
 - Minimum distance from \(s \) to \(u \) passing only through \(W \)
 - Start with \(\Delta[u] = T[s,u] \) (or \(\Delta[s] = 0, \Delta[u] = \infty \))
- At each step we **enlarge** \(W \) by adding a new vertex \(w \not\in W \)
 - \(w \) is the one with minimum \(\Delta[w] \)

Example graph

![Example graph](image)

Expanding the vertex set \(w \) in stages

<table>
<thead>
<tr>
<th>Stage</th>
<th>(W)</th>
<th>(V - W)</th>
<th>(w)</th>
<th>(\Delta(w))</th>
<th>(\Delta(1))</th>
<th>(\Delta(2))</th>
<th>(\Delta(3))</th>
<th>(\Delta(4))</th>
<th>(\Delta(5))</th>
<th>(\Delta(6))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>{1}</td>
<td>{2,3,4,5,6}</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Expanding the vertex set \(w \) in stages

\(W=2 \) is chosen for the second stage.

<table>
<thead>
<tr>
<th>Stage</th>
<th>(W)</th>
<th>(V-W)</th>
<th>(w)</th>
<th>(\Delta(w))</th>
<th>(\Delta(1))</th>
<th>(\Delta(2))</th>
<th>(\Delta(3))</th>
<th>(\Delta(4))</th>
<th>(\Delta(5))</th>
<th>(\Delta(6))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>(1)</td>
<td>{2,3,4,5,6}</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(1,2)</td>
<td>{3,4,5,6}</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>(\infty)</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

\(W=6 \) is chosen for the third stage.

<table>
<thead>
<tr>
<th>Stage</th>
<th>(W)</th>
<th>(V-W)</th>
<th>(w)</th>
<th>(\Delta(w))</th>
<th>(\Delta(1))</th>
<th>(\Delta(2))</th>
<th>(\Delta(3))</th>
<th>(\Delta(4))</th>
<th>(\Delta(5))</th>
<th>(\Delta(6))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>(1)</td>
<td>{2,3,4,5,6}</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>(1,2)</td>
<td>{3,4,5,6}</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>(1,2)</td>
<td>{3,4,5}</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>(\infty)</td>
<td>5</td>
</tr>
</tbody>
</table>
Expanding the vertex set w in stages

$W=4$ is chosen for the fourth stage.

<table>
<thead>
<tr>
<th>Stage</th>
<th>W</th>
<th>$V-W$</th>
<th>w</th>
<th>$\Delta(w)$</th>
<th>$\Delta(1)$</th>
<th>$\Delta(2)$</th>
<th>$\Delta(3)$</th>
<th>$\Delta(4)$</th>
<th>$\Delta(5)$</th>
<th>$\Delta(6)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>1</td>
<td>(2,3,4,5,6)</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>(1,2)</td>
<td>(3,4,5,6)</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>(1,2,6)</td>
<td>(3,4,5)</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>(1,2,6,4)</td>
<td>(3,5)</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>13</td>
<td>5</td>
</tr>
</tbody>
</table>

Expanding the vertex set w in stages

$W=3$ is chosen for the fifth stage.

<table>
<thead>
<tr>
<th>Stage</th>
<th>W</th>
<th>$V-W$</th>
<th>w</th>
<th>$\Delta(w)$</th>
<th>$\Delta(1)$</th>
<th>$\Delta(2)$</th>
<th>$\Delta(3)$</th>
<th>$\Delta(4)$</th>
<th>$\Delta(5)$</th>
<th>$\Delta(6)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>1</td>
<td>(2,3,4,5,6)</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>(1,2)</td>
<td>(3,4,5,6)</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>(1,2,6)</td>
<td>(3,4,5)</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>(1,2,6,4)</td>
<td>(3,5)</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>(1,2,6,4,3)</td>
<td>(5)</td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>11</td>
<td>5</td>
</tr>
</tbody>
</table>
Expanding the vertex set w in stages

$W=5$ is chosen for the sixth stage.

<table>
<thead>
<tr>
<th>Stage</th>
<th>W</th>
<th>$V-W$</th>
<th>w</th>
<th>$\Delta(w)$</th>
<th>$\Delta(1)$</th>
<th>$\Delta(2)$</th>
<th>$\Delta(3)$</th>
<th>$\Delta(4)$</th>
<th>$\Delta(5)$</th>
<th>$\Delta(6)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>{1}</td>
<td>(2,3,4,5,6)</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>(1,2)</td>
<td>(3,4,5,6)</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>(1,2,6)</td>
<td>(3,4,5)</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>(1,2,6,4)</td>
<td>(3,5)</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>(1,2,6,4,3)</td>
<td>(5)</td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>11</td>
<td>5</td>
</tr>
</tbody>
</table>

Dijkstra's algorithm in pseudocode

```plaintext
// Κυρίως αλγόριθμος
while true   
    w = vertex with minimum dist[w], among those with W[w] = θ
    W[w] = 1
    if w == dest
        stop
        // optimal cost = dist[dest]
        // optimal path = dest <-> prev[dest] <-> ... <-> src (inverse)
    for each neighbor u of w
        if W[u] == 1
            continue
        alt = dist[w] + weight(w,u) // κόστος του src -> ... -> w
        if alt < dist[u]
            dist[u] = alt
            prev[u] = w
```

// Εξέλικτες κάθε κόμβο ν
W[u] = 1 αν o w είναι στο σύνολο W, θ διαφορετικά
dist[u] = ο πίνακας Δ
prev[u] = o προηγούμενος του ν στο βέλτιστο μονοπάτι

// Αρχικοποίηση: W=() (εναλλακτικά μπορούμε και W={src})
for each vertex u in Graph
 dist[u] = INT_MAX // infinity
 prev[u] = NULL
 W[u] = 0

dist[src] = 0
Using a priority queue

- Finding the \(w \not\in W \) with minimum \(\Delta[w] \) is slow
 - \(O(n) \) time
- But we can use a priority queue for this!
 - We only keep vertices \(w \not\in W \) in the queue
 - They are compared based on their \(\Delta[w] \)
 (each \(w \) has "priority" \(\Delta[w] \))
- Careful when \(\Delta[w] \) is modified!
 - Either use a priority queue that allows updates
 - Or insert multiple copies of each with different priorities
- The queue might contain already visited vertices: ignore them

Dijkstra's algorithm with priority queue

```plaintext
// Δεδομένα
src : αρχικός κόμβος
dest : τελικός κόμβος

// Πληροφορίες που κρατάμε για κάθε κόμβο u
W[u] : 1 αν o ν είναι στο σύνολο W, 0 διαφορετικά
dist[u] : ο πίνακας Δ
pq : Priority queue, εισάγουμε tuples (u,dist[u])

// Αρχικοποίηση: W={}, (εναλλακτικά μπορούμε και W={src})
prev[src] = NULL
dist[src] = 0
pqueue_insert(pq, {src,0})  // dist[src] = 0

// Κύριος αλγόριθμος
while pq is not empty
    w = pqueue_max(pq) // w with minimal dist[u]
    pqueue_remove_max(pq)
    if exists(W[w]) // το w μπορεί να υπάρχει πολλές φορές στην ο
        continue // δεν κάνουμε replace), και να είναι ήδη vis
    W[w] = 1
    if w == dest
        stop  // optimal cost/path same as before
    for each neighbor u of w
        if exists(W[u])
            continue
        alt = dist[w] + weight(w,u) // cost of src->...->w->u
        if !exists(dist[u]) OR alt < dist[u]
            dist[u] = alt
            prev[u] = w
            pqueue_insert(pq, {u,alt})  // προαιρετικά: replace αν υπ
    stop // pq άδειασε πριν βρούμε το dest => δεν υπάρχει μονοπάτι

stop // pq άδειασε πριν βρούμε το dest => δεν υπάρχει μονοπάτι
```

Notation

- \(s \rightarrow d \)
 - Direct step step from \(s \) to \(d \)
- \(s \xrightarrow{W} d \)
 - Multiple steps \(s \rightarrow \ldots \rightarrow d \)
 - All intermediate steps belong to the set \(W \subseteq V \)
- \(s \xrightarrow{V} d \)
 - Shortest path among all \(s \rightarrow d \)
 - So \(s \xrightarrow{V} d \) is the overall shortest one
Proof of correctness

- We need to prove that $\Delta[u]$ is the minimum distance to u
 - after the algorithm finishes

- But it’s much easier to reason step by step
 - we need a property that holds at every step
 - this is called an invariant (property that never changes)

Proof of correctness

Invariant of Dijkstra’s algorithm

- $\Delta[u]$ is the cost of the shortest path passing only through W
- And the shortest overall when $u \in W$

Formally:

1. For all $u \in V$ the path $s \rightarrow u$ has cost $\Delta[u]$
2. For all $u \in W$ the path $s \rightarrow u$ has cost $\Delta[u]$

Proof: induction on the size of W, for both (1), (2) together

Proof of correctness

Base case $W = \{s\}$

- Trivial, the only path $s \rightarrow u$ is the direct one $s \rightarrow u$
- For (1): its cost is exactly $T[s, u] = \Delta[u]$
 - initial value of $\Delta[u]$
- For (2): the only $u \in W$ is s itself

Proof of correctness

Inductive case

- Assume $|W| = k$ and (1),(2) hold

- The algorithm
 - Updates W, adding a new vertex $w \notin W$
 - Updates $\Delta[u]$ for all neighbours u of w
- Let W', Δ' be the values after the update
- Show that (1),(2) still hold for W', Δ'
Proof of correctness

We start showing that (2) still holds for W', Δ'

- The interesting vertex is the w we just added
 - Vertices $u \neq w$ are trivial from the induction hypothesis
- Show: $s \xrightarrow{V} w$ has cost $\Delta'[w]$
 - Note: $\Delta'[w] = \Delta[w]$ (we do not update $\Delta[w]$)
 - We already know that $s \xrightarrow{W} w$ has cost $\Delta[w]$ (ind. hyp)
 - So we just need to prove that there is no better path outside W

Proof of correctness

It remains to show (1) for W', Δ'

- Take some arbitrary u
 - Let c be the cost of $s \xrightarrow{W} u$
 - Show: $c = \Delta'[u]$
- Three cases for the optimal path $s \xrightarrow{W'} u$
 - Case 1: the path does not pass through w
 - So it is of the form $s \xrightarrow{W} u$
 - This path has cost $\Delta[u]$ (induction hypothesis)
 - No update: $\Delta'[u] = \Delta[u] = c$
 - Case 2: w is right before u
 - So the path is of the form $s \xrightarrow{W} w \rightarrow u$
 - The cost of $s \xrightarrow{W} w$ is $\Delta[w]$ (induction hypothesis)
 - So $c = \Delta[w] + T[w, u]$
 - So the algorithm will set $\Delta'[u] = \Delta[w] + T[w, u]$ when updating the neighbours of w
 - So $c = \Delta'[u]$

Proof of correctness

- Assumming such path exists, let r be its first vertex outside W
 - So the path $s \xrightarrow{W} r \xrightarrow{V} w$ has cost $c < \Delta[w]$
 - So the path $s \xrightarrow{W} r$ has cost at most $c < \Delta[w]$ (no negative weights!)
 - So $\Delta[r] < \Delta[w]$
- Impossible! We chose w to be the one with min $\Delta[w]$
Proof of correctness

- Case 3: some other x appears after w in the path
 - So the path is of the form $s \xrightarrow{w} w \rightarrow x \xrightarrow{w} u$
 - But the path $s \xrightarrow{w} w \rightarrow x$ is no shorter than $s \xrightarrow{w} x$
 - From the induction hypothesis for $x \in W$
 - So $s \xrightarrow{w} x \rightarrow u$ is also optimal, reducing to case 1!

Complexity

Without a priority queue:

- Initialization stage: loop over vertices: $O(n)$
- The while-loop adds one vertex every time: n iterations
- Finding the new vertex loops over vertices: $O(n)$
 - same for updating the neighbours
- So total $O(n^2)$ time

The all-pairs shortest path problem

- Find the shortest path between all pairs s, d
- **Floyd-Warshall** algorithm
- Any weights
 - Even negative
 - But no **negative loops** (why?)

With a priority queue:

- Initialization stage: loop over vertices, so $O(n)$
- Count the number of updates (steps in the inner loop)
 - Once for every neighbour of every node: e total
 - Each update is $O(\log n)$ (at most n elements in the queue)
- Total $O(e \log n)$
 - Assuming a connected graph ($e \geq n$)
 - And an implementation using adjacency lists
- Only good for **sparse** graphs!
 - But $O(n \log n)$ can be hugely better than $O(n^2)$
The all-pairs shortest path problem

Main idea

- At each step we compute the shortest path through a subset of vertices.
 - Similarly to W in Dijkstra.
 - But now the set at step k is $W_k = \{1, \ldots, k\}$
 - Vertices are numbered in any order.
- Step k: the cost of $i \rightarrow j$ is $A[k][i,j]$
 - Similar to Δ in Dijkstra (but for all pairs of nodes).

Floyd-Warshall algorithm

- The algorithm at each step computes A_k from A_{k-1}.
- Initial step $k = 0$
 - Start with $A_0[i,j] = T[i,j]$.
 - Only direct paths are allowed.

Floyd-Warshall algorithm in pseudocode

```java
void floyd_warshall() {
    for (int i = 0; i <= size-1; i++)
        for (int j = 0; j <= size-1; j++)
            A[i][j] = weight(i, j);
    for (int i = 0; i <= size-1; i++)
        A[i][i] = 0;
    for (int k = 0; k <= size-1; k++)
        // Compute $A_k$ from $A_{k-1}$
        for (int i = 0; i <= size-1; i++)
            for (int j = 0; j <= size-1; j++)
}
```

A is the current A_k at every step k.

$A_k[i,j]$ either passes through k or not.

k-th iteration: the optimal $i \rightarrow j$ either passes through k or not.

$$A_k[i,j] = \min \{ A_{k-1}[i,j], A_{k-1}[i,k] + A_{k-1}[k,j] \}$$
Complexity

- Three simple loops of n steps
- So $O(n^3)$
- Not better than n executions of Dijkstra in complexity
 - But much simpler
 - Often faster in practice
 - And works for negative weights

Readings

- T. A. Standish. *Data Structures, Algorithms and Software Principles in C.* Chapter 10