Weighted graphs

- Graphs with numbers, called **weights**, attached to each edge
 - Often restricted to **non-negative**
- Directed or undirected
- Examples
 - **Distance** between cities
 - **Cost** of flight between airports
 - **Time** to send a message between routers

Weighted graphs

- Adjacency matrix representation
 \[
 T[i, j] = \begin{cases}
 w_{i,j} & \text{if } i, j \text{ are connected} \\
 \infty & \text{if } i \neq j \text{ are not connected} \\
 0 & \text{if } i = j
 \end{cases}
 \]
- Similarly for adjacency lists

Example weighted graph

1. 2 3
2. 7
3. 5
4. 6
5. 7
6. 10
7. 8
8. 1
9. 2
10. 5
11. 6
Example weighted graph

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>∞</td>
<td>0</td>
<td>7</td>
<td>∞</td>
<td>∞</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>∞</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>6</td>
<td>∞</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>∞</td>
<td>∞</td>
<td>8</td>
<td>2</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>

Adjacency matrix

Shortest paths

- The length of a path is the sum of the weights of its edges
- Very common problem
 - Find the shortest path from s to d
- Examples
 - Shortest route between cities
 - Cheapest connecting flight
 - Fastest network route
 - ...

Shortest path from vertex 1 to vertex 5

Shortest path problem

Two main variants:

- **Single source** s
 - Find the shortest path from s to each node
 - Dijkstra's algorithm
 - Only for non-negative weights (important!)
- **All-pairs**
 - Find the shortest path between all pairs s, d
 - Floyd-Warshall algorithm
 - Any weights
Dijkstra's algorithm

Main ideas:
- Keep a set W of visited nodes
 - Start with $W = \{s\}$ (or $W = \{\}$)
- Keep a matrix $\Delta[u]$
 - Minimum distance from s to u passing only through W
 - Start with $\Delta[u] = T[s, u]$ (or $\Delta[s] = 0, \Delta[u] = \infty$)
- At each step we enlarge W by adding a new vertex $w \not\in W$
 - w is the one with minimum $\Delta[w]$

Expanding the vertex set w in stages

Example graph

<table>
<thead>
<tr>
<th>Stage</th>
<th>W</th>
<th>V-W</th>
<th>w</th>
<th>$\Delta(w)$</th>
<th>$\Delta(1)$</th>
<th>$\Delta(2)$</th>
<th>$\Delta(3)$</th>
<th>$\Delta(4)$</th>
<th>$\Delta(5)$</th>
<th>$\Delta(6)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>${1}$</td>
<td>${2,3,4,5,6}$</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
</tbody>
</table>
Expanding the vertex set \(w \) in stages

\(W = 2 \) is chosen for the second stage.

<table>
<thead>
<tr>
<th>Stage</th>
<th>(W)</th>
<th>(V-W)</th>
<th>(w)</th>
<th>(\Delta(w))</th>
<th>(\Delta(1))</th>
<th>(\Delta(2))</th>
<th>(\Delta(3))</th>
<th>(\Delta(4))</th>
<th>(\Delta(5))</th>
<th>(\Delta(6))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>1</td>
<td>{2,3,4,5,6}</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>1,2</td>
<td>{3,4,5,6}</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>5</td>
</tr>
</tbody>
</table>

Expanding the vertex set \(w \) in stages

\(W = 6 \) is chosen for the third stage.

<table>
<thead>
<tr>
<th>Stage</th>
<th>(W)</th>
<th>(V-W)</th>
<th>(w)</th>
<th>(\Delta(w))</th>
<th>(\Delta(1))</th>
<th>(\Delta(2))</th>
<th>(\Delta(3))</th>
<th>(\Delta(4))</th>
<th>(\Delta(5))</th>
<th>(\Delta(6))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>1</td>
<td>{2,3,4,5,6}</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>1,2</td>
<td>{3,4,5,6}</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>1,2,6</td>
<td>{3,4,5}</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>(\infty)</td>
<td>5</td>
</tr>
</tbody>
</table>
Expanding the vertex set w in stages

$W=4$ is chosen for the fourth stage.

<table>
<thead>
<tr>
<th>Stage</th>
<th>W</th>
<th>V-W</th>
<th>w</th>
<th>$\Delta(w)$</th>
<th>$\Delta(1)$</th>
<th>$\Delta(2)$</th>
<th>$\Delta(3)$</th>
<th>$\Delta(4)$</th>
<th>$\Delta(5)$</th>
<th>$\Delta(6)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>[1]</td>
<td>(2,3,4,5,6)</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>(1,2)</td>
<td>(3,4,5,6)</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>(1,2,6)</td>
<td>(3,4,5)</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>(1,2,6,4)</td>
<td>(3,5)</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>13</td>
<td>5</td>
</tr>
</tbody>
</table>

Expanding the vertex set w in stages

$W=3$ is chosen for the fifth stage.

<table>
<thead>
<tr>
<th>Stage</th>
<th>W</th>
<th>V-W</th>
<th>w</th>
<th>$\Delta(w)$</th>
<th>$\Delta(1)$</th>
<th>$\Delta(2)$</th>
<th>$\Delta(3)$</th>
<th>$\Delta(4)$</th>
<th>$\Delta(5)$</th>
<th>$\Delta(6)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>[1]</td>
<td>(2,3,4,5,6)</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>(1,2)</td>
<td>(3,4,5,6)</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>(1,2,6)</td>
<td>(3,4,5)</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>(1,2,6,4)</td>
<td>(3,5)</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>(1,2,6,4,3)</td>
<td>(5)</td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

Expanding the vertex set w in stages

Stage W V-W | w | $\Delta(w)$ | $\Delta(1)$ | $\Delta(2)$ | $\Delta(3)$ | $\Delta(4)$ | $\Delta(5)$ | $\Delta(6)$ |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>[1]</td>
<td>(2,3,4,5,6)</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>(1,2)</td>
<td>(3,4,5,6)</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>∞</td>
</tr>
<tr>
<td>3</td>
<td>(1,2,6)</td>
<td>(3,4,5)</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>(1,2,6,4)</td>
<td>(3,5)</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>(1,2,6,4,3)</td>
<td>(5)</td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
</tr>
</tbody>
</table>
Expanding the vertex set w in stages

$W = 5$ is chosen for the sixth stage.

<table>
<thead>
<tr>
<th>Stage</th>
<th>W</th>
<th>$V - W$</th>
<th>w</th>
<th>$\Delta(1)$</th>
<th>$\Delta(2)$</th>
<th>$\Delta(3)$</th>
<th>$\Delta(4)$</th>
<th>$\Delta(5)$</th>
<th>$\Delta(6)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>(1)</td>
<td>(2,3,4,5,6)</td>
<td>-</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(1,2)</td>
<td>(3,4,5,6)</td>
<td>2 3</td>
<td>0</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(1,2,6)</td>
<td>(3,4,5)</td>
<td>6 5</td>
<td>0</td>
<td>10</td>
<td>7</td>
<td>∞</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(1,2,6,4)</td>
<td>(3,5)</td>
<td>4 7</td>
<td>0</td>
<td>10</td>
<td>7</td>
<td>13</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(1,2,6,4,3)</td>
<td>(5)</td>
<td>3 10</td>
<td>0</td>
<td>10</td>
<td>7</td>
<td>11</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Dijkstra's algorithm in pseudocode

```
// Κυρίως αλγόριθμος
while true
    w = vertex with minimum dist[w], among those with W[w] = 0
    W[w] = 1
    if w == dest
        stop
        // optimal cost = dist[dest]
        // optimal path = dest <- prev[dest] <- ... <- src (inverse)
    for each neighbor u of w
        if W[u] == 1
            continue
        alt = dist[w] + weight(w,u) // κόστος του src -> ... -> w
        if alt < dist[u]
            dist[u] = alt
            prev[u] = w
```

Dijkstra's algorithm in pseudocode

```
// Δεδομέα
src : αρχικός κόμβος
dest : τελικός κόμβος

// Πληροφορίες που κρατάμε για κάθε κόμβο ν
W[u] : 1 αν ο u είναι στο σύνολο W, 0 διαφορετικά
dist[u] : o πίνακας Δ
prev[u] : o προηγούμενος του ν στο βέλτιστο μονοπάτι

// Αρχικοποίηση: W={} (εναλλακτικά μπορούμε και W={src})
for each vertex u in Graph
    dist[u] = INT_MAX // infinity
    prev[u] = NULL
    W[u] = 0

dist[src] = 0
```
Using a priority queue

- Finding the \(w \notin W \) with minimum \(\Delta[w] \) is slow
 - \(O(n) \) time

- But we can use a priority queue for this!
 - We only keep vertices \(w \notin W \) in the queue
 - They are compared based on their \(\Delta[w] \)
 (each \(w \) has “priority” \(\Delta[w] \))

- Careful when \(\Delta[w] \) is modified!
 - Either use a priority queue that allows updates
 - Or insert multiple copies of each with different priorities
 - the queue might contain already visited vertices: ignore them

Dijkstra's algorithm with priority queue

```
// Κύριος αλγόριθμος
while pq is not empty
  w = pq.queue_max(pq) // w with minimal dist[u]
  pq.remove_max(pq)
  if exists(W[w]) // το w μπορεί να υπάρχει πολλές φορές στην ο
    continue // δεν κάνουμε replace), και να είναι ήδη vis
  if w == dest
    stop // optimal cost/path same as before
  for each neighbor u of w
    if exists(W[u])
      continue
    alt = dist[w] + weight(w,u) // cost of src->...->w->u
    if !exists(dist[u]) OR alt < dist[u]
      dist[u] = alt
      prev[u] = w
      pq.insert(pq, {u,alt}) // προαιρετικά: replace αν υπ
  stop // pq άδειασε πριν βρούμε το dest => δεν υπάρχει μονοπάτι
```

Notation

- \(s \rightarrow d \)
 - Direct step step from \(s \) to \(d \)

- \(s \xrightarrow{W} d \)
 - Multiple steps \(s \rightarrow \ldots \rightarrow d \)
 - All intermediate steps belong to the set \(W \subseteq V \)

- \(s \xrightarrow{V} d \)
 - Shortest path among all \(s \xrightarrow{W} d \)
 - So \(s \xrightarrow{V} d \) is the overall shortest one
Proof of correctness

- We need to prove that $\Delta[u]$ is the **minimum distance** to u
 - **after** the algorithm finishes
- But it’s much easier to reason **step by step**
 - we need a property that holds **at every step**
 - this is called an **invariant** (property that never changes)

Invariant of Dijkstra’s algorithm

Formally:

1. For all $u \in V$ the path $s \rightarrow u$ has cost $\Delta[u]$
2. For all $u \in W$ the path $s \rightarrow u$ has cost $\Delta[u]$

Proof: **induction** on the **size of W**, for both (1), (2) together

Proof of correctness

Base case $W = \{s\}$

- Trivial, the only path $s \rightarrow u$ is the direct one $s \rightarrow u$
- For (1): its cost is exactly $T[s, u] = \Delta[u]$
 - initial value of $\Delta[u]$
- For (2): the only $u \in W$ is s itself

Inductive case

Assume $|W| = k$ and (1),(2) hold
- The algorithm
 - Updates W, adding a new vertex $w \notin W$
 - Updates $\Delta[u]$ for all neighbours u of w
- Let W', Δ' be the values **after** the update
- Show that (1),(2) still hold for W', Δ'
Proof of correctness

We start showing that (2) still holds for W', Δ'

- The interesting vertex is the w we just added
 - Vertices $u \neq w$ are trivial from the induction hypothesis

- Show: $s \xrightarrow{V} w$ has cost $\Delta'[w]$
 - Note: $\Delta'[w] = \Delta[w]$ (we do not update $\Delta[w]$)
 - We already know that $s \xrightarrow{W} w$ has cost $\Delta[w]$ (ind. hyp)
 - So we just need to prove that there is no better path outside W

Assuming such path exists, let r be its first vertex outside W

- So the path $s \xrightarrow{W} r \xrightarrow{V} w$ has cost $c < \Delta[w]$
- So the path $s \xrightarrow{W} r$ has cost at most $c < \Delta[w]$ (no negative weights!)
- So $\Delta[r] < \Delta[w]$

Impossible! We chose w to be the one with min $\Delta[w]$

Proof of correctness

It remains to show (1) for W', Δ'

- Take some arbitrary u
 - Let c be the cost of $s \xrightarrow{W} u$
 - Show: $c = \Delta'[u]$

- Three cases for the optimal path $s \xrightarrow{W} u$

Case 1: the path does not pass through w

- So it is of the form $s \xrightarrow{W} u$
- This path has cost $\Delta[u]$ (induction hypothesis)
- No update: $\Delta'[u] = \Delta[u] = c$

Case 2: w is right before u

- So the path is of the form $s \xrightarrow{W} w \rightarrow u$
- The cost of $s \xrightarrow{W} w$ is $\Delta[w]$ (induction hypothesis)
- So $c = \Delta[w] + T[w, u]$
- So the algorithm will set $\Delta'[u] = \Delta[w] + T[w, u]$ when updating the neighbours of w
- So $c = \Delta'[u]$
Proof of correctness

- Case 3: some other x appears after w in the path
 - So the path is of the form $s \xrightarrow{W} w \rightarrow x \xrightarrow{W} u$
 - But the path $s \xrightarrow{W} w \rightarrow x$ is no shorter than $s \xrightarrow{W} x$
 - From the induction hypothesis for $x \in W$
 - So $s \xrightarrow{W} x \rightarrow u$ is also optimal, reducing to case 1!

Complexity

Without a priority queue:

- Initialization stage: loop over vertices: $O(n)$
- The while-loop adds one vertex every time: n iterations
- Finding the new vertex loops over vertices: $O(n)$
 - same for updating the neighbours
- So total $O(n^2)$ time

Complexity

With a priority queue:

- Initialization stage: loop over vertices, so $O(n)$
- Count the number of updates (steps in the inner loop)
 - Once for every neighbour of every node: e total
 - Each update is $O(\log n)$ (at most n elements in the queue)
- Total $O(e \log n)$
 - Assuming a connected graph ($e \geq n$)
 - And an implementation using adjacency lists
- Only good for sparse graphs!
 - But $O(n \log n)$ can be hugely better than $O(n^2)$

The all-pairs shortest path problem

- Find the shortest path between all pairs s, d
- **Floyd-Warshall** algorithm
- Any weights
 - Even negative
 - But no negative loops (why?)

Diagram:

A diagram showing a network of vertices and edges, with labels s, w, x, u, and W. The diagram illustrates the path and the relationships between the vertices.
The all-pairs shortest path problem

Main idea
- At each step we compute the shortest path through a subset of vertices
 - Similarly to \(W \) in Dijkstra
 - But now the set at step \(k \) is \(W_k = \{1, \ldots, k\} \)
 - Vertices are numbered in any order
- Step \(k \): the cost of \(i \rightarrow j \) is \(A_k[i, j] \)
 - Similar to \(\Delta \) in Dijkstra (but for all pairs of nodes)

Floyd-Warshall algorithm

- The algorithm at each step computes \(A_k \) from \(A_{k-1} \)
- Initial step \(k = 0 \)
 - Start with \(A_0[i, j] = T[i, j] \)
 - Only direct paths are allowed

Floyd-Warshall algorithm in pseudocode

```pseudocode
void floyd_warshall() {
    for (int i = 0; i < size-1; i++)
        for (int j = 0; j < size-1; j++)
            A[i][j] = weight(i, j)
    for (int i = 0; i < size-1; i++)
        A[i][i] = 0;
    for (int k = 0; k < size-1; k++)
        // Compute \( A_k \) from \( A_{k-1} \)
        for (int i = 0; i < size-1; i++)
            for (int j = 0; j < size-1; j++)
}
```

A is the current \(A_k \) at every step \(k \).
Complexity

- Three simple loops of \(n \) steps
- So \(O(n^3) \)
- **Not** better than \(n \) executions of Dijkstra in complexity
 - But much simpler
 - Often faster in practice
 - And works for **negative** weights

Readings

- T. A. Standish. *Data Structures, Algorithms and Software Principles in C*. Chapter 10