Weighted graphs

Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού
Κώστας Χατζηκοκολάκης
Weighted graphs

• Graphs with numbers, called weights, attached to each edge
 - Often restricted to non-negative

• Directed or undirected

• Examples
 - Distance between cities
 - Cost of flight between airports
 - Time to send a message between routers
Weighted graphs

• Adjacency matrix representation

\[T[i, j] = \begin{cases} w_{i,j} & \text{if } i, j \text{ are connected} \\ \infty & \text{if } i \neq j \text{ are not connected} \\ 0 & \text{if } i = j \end{cases} \]

• Similarly for adjacency lists
Example weighted graph
Example weighted graph

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>∞</td>
<td>0</td>
<td>7</td>
<td>∞</td>
<td>∞</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>∞</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>6</td>
<td>∞</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>∞</td>
<td>∞</td>
<td>8</td>
<td>2</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>

Adjacency matrix
Shortest paths

• The **length** of a path is the **sum of the weights** of its edges

• Very common problem
 - find the **shortest path** from \(s \) to \(d \)

• Examples
 - Shortest route between cities
 - Cheapest connecting flight
 - Fastest network route
 - ...
Shortest path from vertex 1 to vertex 5

1 - 6 - 5

Distance: 7
Shortest path problem

Two main variants:

• **Single source** s
 - Find the shortest path from s to each node
 - **Dijkstra's** algorithm
 - Only for non-negative weights (important!)

• **All-pairs**
 - Find the shortest path between all pairs s, d
 - **Floyd-Warshall** algorithm
 - Any weights
Dijkstra's algorithm

Main ideas:

• Keep a set \(W \) of \textbf{visited} nodes
 - Start with \(W = \{s\} \) (or \(W = \{\} \))

• Keep a matrix \(\Delta[u] \)
 - Minimum distance from \(s \) to \(u \) \textbf{passing only through} \(W \)
 - Start with \(\Delta[u] = T[s, u] \) (or \(\Delta[s] = 0, \Delta[u] = \infty \))

• At each step we \textbf{enlarge} \(W \) by adding a \textbf{new vertex} \(w \notin W \)
 - \(w \) is the one with \textbf{minimum} \(\Delta[w] \)
Dijkstra's algorithm

Main ideas:

• Adding w to W might affect $\Delta[u]$
 - For some neighbour u of w

• We might now have a shorter path to u passing through w
 - Of the form $s \rightarrow \ldots \rightarrow w \rightarrow u$
 - If $\Delta[u] > \Delta[w] + T[w, u]$

• In this case we update Δ
 - $\Delta[u] = \Delta[w] + T[w, u]$
Example graph
Expanding the vertex set w in stages

<table>
<thead>
<tr>
<th>Stage</th>
<th>W</th>
<th>$V-W$</th>
<th>w</th>
<th>$\Delta(w)$</th>
<th>$\Delta(1)$</th>
<th>$\Delta(2)$</th>
<th>$\Delta(3)$</th>
<th>$\Delta(4)$</th>
<th>$\Delta(5)$</th>
<th>$\Delta(6)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>${1}$</td>
<td>${2,3,4,5,6}$</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
</tbody>
</table>

Diagram: A graph with vertices labeled 1 to 6 and edges labeled with respective weights.
Expanding the vertex set \(w \) in stages

\(W=2 \) is chosen for the second stage.

<table>
<thead>
<tr>
<th>Stage</th>
<th>(W)</th>
<th>(V-W)</th>
<th>(w)</th>
<th>(\Delta(w))</th>
<th>(\Delta(1))</th>
<th>(\Delta(2))</th>
<th>(\Delta(3))</th>
<th>(\Delta(4))</th>
<th>(\Delta(5))</th>
<th>(\Delta(6))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>{1}</td>
<td>{2,3,4,5,6}</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

![Graph](image_url)
Expanding the vertex set w in stages

<table>
<thead>
<tr>
<th>Stage</th>
<th>W</th>
<th>V-W</th>
<th>w</th>
<th>Δ(w)</th>
<th>Δ(1)</th>
<th>Δ(2)</th>
<th>Δ(3)</th>
<th>Δ(4)</th>
<th>Δ(5)</th>
<th>Δ(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>{1}</td>
<td>{2,3,4,5,6}</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>{1,2}</td>
<td>{3,4,5,6}</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
</tbody>
</table>

![Graph diagram with nodes and edges illustrating the expansion process.](image)
Expanding the vertex set w in stages

$W=6$ is chosen for the third stage.

<table>
<thead>
<tr>
<th>Stage</th>
<th>W</th>
<th>V-W</th>
<th>w</th>
<th>$\Delta(w)$</th>
<th>$\Delta(1)$</th>
<th>$\Delta(2)$</th>
<th>$\Delta(3)$</th>
<th>$\Delta(4)$</th>
<th>$\Delta(5)$</th>
<th>$\Delta(6)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>{1}</td>
<td>{2,3,4,5,6}</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>{1,2}</td>
<td>{3,4,5,6}</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
</tbody>
</table>
Expanding the vertex set w in stages

<table>
<thead>
<tr>
<th>Stage</th>
<th>W</th>
<th>V-W</th>
<th>w</th>
<th>Δ(w)</th>
<th>Δ(1)</th>
<th>Δ(2)</th>
<th>Δ(3)</th>
<th>Δ(4)</th>
<th>Δ(5)</th>
<th>Δ(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>{1}</td>
<td>{2,3,4,5,6}</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>{1,2}</td>
<td>{3,4,5,6}</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>{1,2,6}</td>
<td>{3,4,5}</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>∞</td>
<td>5</td>
</tr>
</tbody>
</table>

The diagram shows the expansion of the vertex set w in stages, with edges indicating connections and weights.
Expanding the vertex set w in stages

$W=4$ is chosen for the fourth stage.

<table>
<thead>
<tr>
<th>Stage</th>
<th>W</th>
<th>V-W</th>
<th>w</th>
<th>$\Delta(w)$</th>
<th>$\Delta(1)$</th>
<th>$\Delta(2)$</th>
<th>$\Delta(3)$</th>
<th>$\Delta(4)$</th>
<th>$\Delta(5)$</th>
<th>$\Delta(6)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>{1}</td>
<td>{2,3,4,5,6}</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>{1,2}</td>
<td>{3,4,5,6}</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>{1,2,6}</td>
<td>{3,4,5}</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>∞</td>
<td>5</td>
</tr>
</tbody>
</table>
Expanding the vertex set \(w \) in stages

<table>
<thead>
<tr>
<th>Stage</th>
<th>(W)</th>
<th>(V-W)</th>
<th>(w)</th>
<th>(\Delta(w))</th>
<th>(\Delta(1))</th>
<th>(\Delta(2))</th>
<th>(\Delta(3))</th>
<th>(\Delta(4))</th>
<th>(\Delta(5))</th>
<th>(\Delta(6))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>{1}</td>
<td>{2,3,4,5,6}</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>{1,2}</td>
<td>{3,4,5,6}</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>{1,2,6}</td>
<td>{3,4,5}</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>(\infty)</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>{1,2,6,4}</td>
<td>{3,5}</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>13</td>
<td>5</td>
</tr>
</tbody>
</table>

![Diagram of the graph with vertex set expansions](image-url)
Expanding the vertex set w in stages

W=3 is chosen for the fifth stage.

<table>
<thead>
<tr>
<th>Stage</th>
<th>W</th>
<th>V-W</th>
<th>w</th>
<th>Δ(w)</th>
<th>Δ(1)</th>
<th>Δ(2)</th>
<th>Δ(3)</th>
<th>Δ(4)</th>
<th>Δ(5)</th>
<th>Δ(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>{1}</td>
<td>{2,3,4,5,6}</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>{1,2}</td>
<td>{3,4,5,6}</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>{1,2,6}</td>
<td>{3,4,5}</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>{1,2,6,4}</td>
<td>{3,5}</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>13</td>
<td>5</td>
</tr>
</tbody>
</table>
Expanding the vertex set \(w \) in stages

<table>
<thead>
<tr>
<th>Stage</th>
<th>(W)</th>
<th>V-W</th>
<th>(w)</th>
<th>(\Delta(w))</th>
<th>(\Delta(1))</th>
<th>(\Delta(2))</th>
<th>(\Delta(3))</th>
<th>(\Delta(4))</th>
<th>(\Delta(5))</th>
<th>(\Delta(6))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>{1}</td>
<td>{2,3,4,5,6}</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>{1,2}</td>
<td>{3,4,5,6}</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>{1,2,6}</td>
<td>{3,4,5}</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>(\infty)</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>{1,2,6,4}</td>
<td>{3,5}</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>{1,2,6,4,3}</td>
<td>{5}</td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>11</td>
<td>5</td>
</tr>
</tbody>
</table>
Expanding the vertex set w in stages

$W=5$ is chosen for the sixth stage.

<table>
<thead>
<tr>
<th>Stage</th>
<th>W</th>
<th>V-W</th>
<th>w</th>
<th>$\Delta(w)$</th>
<th>$\Delta(1)$</th>
<th>$\Delta(2)$</th>
<th>$\Delta(3)$</th>
<th>$\Delta(4)$</th>
<th>$\Delta(5)$</th>
<th>$\Delta(6)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>{1}</td>
<td>{2,3,4,5,6}</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>{1,2}</td>
<td>{3,4,5,6}</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>{1,2,6}</td>
<td>{3,4,5}</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>{1,2,6,4}</td>
<td>{3,5}</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>{1,2,6,4,3}</td>
<td>{5}</td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>11</td>
<td>5</td>
</tr>
</tbody>
</table>
Expanding the vertex set w in stages

<table>
<thead>
<tr>
<th>Stage</th>
<th>W</th>
<th>$V-W$</th>
<th>w</th>
<th>$\Delta(w)$</th>
<th>$\Delta(1)$</th>
<th>$\Delta(2)$</th>
<th>$\Delta(3)$</th>
<th>$\Delta(4)$</th>
<th>$\Delta(5)$</th>
<th>$\Delta(6)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>${1}$</td>
<td>${2,3,4,5,6}$</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>${1,2}$</td>
<td>${3,4,5,6}$</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>${1,2,6}$</td>
<td>${3,4,5}$</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>${1,2,6,4}$</td>
<td>${3,5}$</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>${1,2,6,4,3}$</td>
<td>${5}$</td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>${1,2,6,4,3,5}$</td>
<td>${}$</td>
<td>5</td>
<td>11</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>11</td>
<td>5</td>
</tr>
</tbody>
</table>

![Graph diagram](image-url)
// Δεδομένα
src : αρχικός κόμβος
dest : τελικός κόμβος

// Πληροφορίες που κρατάμε για κάθε κόμβο v
W[u] : 1 αν ο u είναι στο σύνολο W, Θ διαφορετικά
dist[u] : ο πίνακας Δ
prev[u] : ο προηγούμενος του v στο βέλτιστο μονοπάτι

// Αρχικοποίηση: W={} (εναλλακτικά μπορούμε και W={src})
for each vertex u in Graph
 dist[u] = INT_MAX // infinity
 prev[u] = NULL
 W[u] = 0

dist[src] = 0
Dijkstra's algorithm in pseudocode

// Κύριως αλγόριθμος
while true
 w = vertex with minimum dist[w], among those with W[w] = 0

 W[w] = 1
 if w == dest
 stop
 // optimal cost = dist[dest]
 // optimal path = dest <- prev[dest] <- ... <- src (inverse)

 for each neighbor u of w
 if W[u] == 1
 continue
 alt = dist[w] + weight(w,u) // κόστος του src -> ... -> w
 if alt < dist[u] // καλύτερο από πριν, update
 dist[u] = alt
 prev[u] = w
Using a priority queue

- Finding the $w \not\in W$ with minimum $\Delta[w]$ is slow
 - $O(n)$ time

- But we can use a priority queue for this!
 - We only keep vertices $w \not\in W$ in the queue
 - They are compared based on their $\Delta[w]$
 (each w has “priority” $\Delta[w]$)

- Careful when $\Delta[w]$ is modified!
 - Either use a priority queue that allows updates
 - Or insert multiple copies of each w with different priorities
 - the queue might contain already visited vertices: ignore them
Dijkstra's algorithm with priority queue

// Δεδομένα
src : αρχικός κόμβος
dest : τελικός κόμβος

// Πληροφορίες που κρατάμε για κάθε κόμβο u
W[u] : 1 αν ο v είναι στο σύνολο W, θ διαφορετικά
dist[u] : ο πίνακας Δ
t[prev] : ο προηγούμενος του v στο βέλτιστο μονοπάτι
pq : Priority queue, εισάγουμε tuples {u,dist[u]}

// Αρχικοποίηση: W={} (εναλλακτικά μπορούμε και W={src})
prev[src] = NULL
dist[src] = 0
pqueue_insert(pq, {src, 0}) // dist[src] = 0
Dijkstra's algorithm with priority queue

```plaintext
// Κύριως αλγόριθμος
while pq is not empty
    w = pqueue_max(pq)  // w with minimal dist[u]
    pqueue_remove_max(pq)

    if exists(W[w])  // το w μπορεί να υπάρχει πολλές φορές στην ο
        continue  // δεν κάνουμε replace), και να είναι ήδη vis
    W[w] = 1
    if w == dest
        stop  // optimal cost/path same as before

    for each neighbor u of w
        if exists(W[u])
            continue
        alt = dist[w] + weight(w,u)  // cost of src->...->w->u
        if !exists(dist[u]) OR alt < dist[u]
            dist[u] = alt
            prev[u] = w
            pqueue_insert(pq, {u,alt})  // προαιρετικά: replace αν υπ

    stop // pq άδειασε πριν βρούμε το dest => δεν υπάρχει μονοπάτι
```
Notation

• $s \rightarrow d$
 - Direct step step from s to d

• $s \underset{W}{\rightarrow} d$
 - Multiple steps $s \rightarrow \ldots \rightarrow d$
 - All intermediate steps belong to the set $W \subseteq V$

• $s \underset{W}{\rightarrow} d$
 - Shortest path among all $s \underset{W}{\rightarrow} d$
 - So $s \underset{V}{\rightarrow} d$ is the overall shortest one
Proof of correctness

• We need to prove that $\Delta[u]$ is the minimum distance to u
 - after the algorithm finishes

• But it's much easier to reason step by step
 - we need a property that holds at every step
 - this is called an invariant (property that never changes)
Proof of correctness

Invariant of Dijkstra's algorithm

- $\Delta[u]$ is the cost of the shortest path passing only through W
- And the shortest overall when $u \in W$

Formally:

1. For all $u \in V$ the path $s \xrightarrow{W} u$ has cost $\Delta[u]$
2. For all $u \in W$ the path $s \xrightarrow{V} u$ has cost $\Delta[u]$

Proof: induction on the size of W, for both (1), (2) together
Proof of correctness

Base case $W = \{s\}$

- Trivial, the only path $s \xrightarrow{W} u$ is the direct one $s \rightarrow u$
- For (1): its cost is exactly $T[s, u] = \Delta[u]$
 - initial value of $\Delta[u]$
- For (2): the only $u \in W$ is s itself
Proof of correctness

Inductive case

- Assume $|\mathcal{W}| = k$ and (1),(2) hold

- The algorithm
 - Updates \mathcal{W}, adding a new vertex $w \notin \mathcal{W}$
 - Updates $\Delta[u]$ for all neighbours u of w

- Let \mathcal{W}', Δ' be the values after the update

- Show that (1),(2) still hold for \mathcal{W}', Δ'
Proof of correctness

We start showing that (2) still holds for W', Δ'

- The interesting vertex is the w we just added
 - Vertices $u \neq w$ are trivial from the induction hypothesis

- Show: $s \xrightarrow{V} w$ has cost $\Delta'[w]$
 - Note: $\Delta'[w] = \Delta[w]$ (we do not update $\Delta[w]$)
 - We already know that $s \xrightarrow{W} w$ has cost $\Delta[w]$ (ind. hyp)
 - So we just need to prove that there is no better path outside W
Proof of correctness

- Assuming such path exists, let \(r \) be its **first** vertex outside \(W \)
 - So the path \(s \xrightarrow{W} r \xrightarrow{V} w \) has cost \(c < \Delta[w] \)
 - So the path \(s \xrightarrow{W} r \) has cost at most \(c < \Delta[w] \) (no negative weights!)
 - So \(\Delta[r] < \Delta[w] \)

- **Impossible!** We chose \(w \) to be the one with min \(\Delta[w] \)
Proof of correctness

It remains to show (1) for W', Δ'

• Take some arbitrary u

 - Let c be the cost of $s \xrightarrow{W'} u$

 - Show: $c = \Delta'[u]$

• Three cases for the optimal path $s \xrightarrow{W'} u$

• Case 1: the path does not pass through w

 - So it is of the form $s \xrightarrow{W} u$

 - This path has cost $\Delta[u]$ (induction hypothesis)

 - No update: $\Delta'[u] = \Delta[u] = c$
Proof of correctness

• Case 2: \(w \) is right before \(u \)
 - So the path is of the form \(s \xrightarrow{W} w \rightarrow u \)
 - The cost of \(s \xrightarrow{W} w \) is \(\Delta[w] \) (induction hypothesis)
 - So \(c = \Delta[w] + T[w, u] \)
 - So the algorithm will set \(\Delta'[u] = \Delta[w] + T[w, u] \)
 when updating the neighbours of \(w \)
 - So \(c = \Delta'[u] \)
Proof of correctness

- Case 3: some other x appears after w in the path
 - So the path is of the form $s \xrightarrow{W} w \rightarrow x \xrightarrow{W} u$
 - But the path $s \xrightarrow{W} w \rightarrow x$ is no shorter than $s \xrightarrow{W} x$
 - From the induction hypothesis for $x \in W$
 - So $s \xrightarrow{W} x \rightarrow u$ is also optimal, reducing to case 1!
Complexity

Without a priority queue:

- Initialization stage: loop over vertices: \(O(n) \)
- The while-loop adds one vertex every time: \(n \) iterations
- Finding the new vertex loops over vertices: \(O(n) \)
 - same for updating the neighbours
- So total \(O(n^2) \) time
Complexity

With a priority queue:

- Initialization stage: loop over vertices, so $O(n)$
- Count the number of updates (steps in the inner loop)
 - Once for every neighbour of every node: e total
 - Each update is $O(\log n)$ (at most n elements in the queue)
- Total $O(e \log n)$
 - Assuming a connected graph ($e \geq n$)
 - And an implementation using adjacency lists
- Only good for sparse graphs!
 - But $O(n \log n)$ can be hugely better than $O(n^2)$
The all-pairs shortest path problem

• Find the shortest path between all pairs \(s, d \)

• **Floyd-Warshall** algorithm

• Any weights
 - Even negative
 - But no **negative loops** (why?)
The all-pairs shortest path problem

Main idea

• At each step we compute the shortest path through a subset of vertices
 - Similarly to W in Dijkstra
 - But now the set at step k is $W_k = \{1, \ldots, k\}$
 ◦ Vectors are numbered in any order

• Step k: the cost of $i \xrightarrow{W_k} j$ is $A_k[i, j]$
 - Similar to Δ in Dijkstra (but for all pairs i, j of nodes)
Floyd-Warshall algorithm

- The algorithm at each step computes A_k from A_{k-1}

- Initial step $k = 0$
 - Start with $A_0[i, j] = T[i, j]$
 - Only direct paths are allowed
Floyd-Warshall algorithm

k-th iteration: the optimal $i \xrightarrow{W_k} j$ either **passes thorough** k or not.

$$A_k[i, j] = \min \begin{cases} A_{k-1}[i, j] \\ A_{k-1}[i, k] + A_{k-1}[k, j] \end{cases}$$
Floyd-Warshall algorithm in pseudocode

```c
void floyd_warshall() {
    for (int i = 0; i <= size-1; i++)
        for (int j = 0; j <= size-1; j++)
            A[i][j] = weight(i, j)

    for (int i = 0; i <= size-1; i++)
        A[i][i] = 0;

    for (int k = 0; k <= size-1; k++)
        // Compute A_k from A_{k-1}
        for (int i = 0; i <= size-1; i++)
            for (int j = 0; j <= size-1; j++)
}
```

A is the current A_k at every step k.
Complexity

• Three simple loops of n steps
• So $O(n^3)$
• **Not** better than n executions of Dijkstra in complexity
 - But much simpler
 - Often faster in practice
 - And works for **negative** weights
Readings

• T. A. Standish. *Data Structures, Algorithms and Software Principles in C*. Chapter 10